×

HoneyTop90: a 90-line MATLAB code for topology optimization using honeycomb tessellation. (English) Zbl 07712206

Summary: This paper provides a simple, compact and efficient 90-line pedagogical MATLAB code for topology optimization using hexagonal elements (honeycomb tessellation). Hexagonal elements provide nonsingular connectivity between two juxtaposed elements and, thus, subdue checkerboard patterns and point connections inherently from the optimized designs. A novel approach to generate honeycomb tessellation is proposed. The element connectivity matrix and corresponding nodal coordinates array are determined in 5 (7) and 4 (6) lines, respectively. Two additional lines for the meshgrid generation are required for an even number of elements in the vertical direction. The code takes a fraction of a second to generate meshgrid information for the millions of hexagonal elements. Wachspress shape functions are employed for the finite element analysis, and compliance minimization is performed using the optimality criteria method. The provided MATLAB code and its extensions are explained in detail. Options to run the optimization with and without filtering techniques are provided. Steps to include different boundary conditions, multiple load cases, active and passive regions, and a Heaviside projection filter are also discussed. The code is provided in Appendix A, and it can also be downloaded along with supplementary materials from https://github.com/PrabhatIn/HoneyTop90.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65-04 Software, source code, etc. for problems pertaining to numerical analysis
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
97N80 Mathematical software, computer programs (educational aspects)

References:

[1] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, BS; Sigmund, O., Efficient topology optimization in matlab using 88 lines of code, Structural and Multidisciplinary Optimization, 43, 1, 1-16 (2011) · Zbl 1274.74310 · doi:10.1007/s00158-010-0594-7
[2] Bourdin, B., Filters in topology optimization, International journal for numerical methods in engineering, 50, 9, 2143-2158 (2001) · Zbl 0971.74062 · doi:10.1002/nme.116
[3] Bruns, TE; Tortorelli, DA, Topology optimization of non-linear elastic structures and compliant mechanisms, Computer methods in applied mechanics and engineering, 190, 26-27, 3443-3459 (2001) · Zbl 1014.74057 · doi:10.1016/S0045-7825(00)00278-4
[4] Challis, VJ, A discrete level-set topology optimization code written in matlab, Structural and multidisciplinary optimization, 41, 3, 453-464 (2010) · Zbl 1274.74322 · doi:10.1007/s00158-009-0430-0
[5] Ferrari, F.; Sigmund, O., A new generation 99 line matlab code for compliance topology optimization and its extension to 3D, Structural and Multidisciplinary Optimization, 62, 4, 2211-2228 (2020) · doi:10.1007/s00158-020-02629-w
[6] Giraldo-Londoño, O.; Paulino, GH, Polystress: a matlab implementation for local stress-constrained topology optimization using the augmented lagrangian method, Structural and Multidisciplinary Optimization, 63, 4, 2065-2097 (2021) · doi:10.1007/s00158-020-02760-8
[7] Haber, RB; Jog, CS; Bendsøe, MP, A new approach to variable-topology shape design using a constraint on perimeter, Structural optimization, 11, 1, 1-12 (1996) · doi:10.1007/BF01279647
[8] Han, Y.; Xu, B.; Liu, Y., An efficient 137-line matlab code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method, Structural and Multidisciplinary Optimization, 63, 5, 2571-2588 (2021) · doi:10.1007/s00158-020-02816-9
[9] Han, Y.; Xu, B.; Wang, Q.; Liu, Y.; Duan, Z., Topology optimization of material nonlinear continuum structures under stress constraints, Computer Methods in Applied Mechanics and Engineering, 378, 113731 (2021) · Zbl 1506.74277 · doi:10.1016/j.cma.2021.113731
[10] Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. John Wiley & Sons · Zbl 1279.90001
[11] Kumar P (2017) Synthesis of large deformable contact-aided compliant mechanisms using hexagonal cells and negative circular masks. PhD thesis, Indian Institute of Technology Kanpur
[12] Kumar, P., Topology optimization of stiff structures under self-weight for given volume using a smooth heaviside function, Structural and Multidisciplinary Optimization, 65, 4, 1-17 (2022) · doi:10.1007/s00158-022-03232-x
[13] Kumar, P.; Saxena, A., On topology optimization with embedded boundary resolution and smoothing, Structural and Multidisciplinary Optimization, 52, 6, 1135-1159 (2015) · doi:10.1007/s00158-015-1272-6
[14] Kumar P, Sauer RA, Saxena A (2016) Synthesis of c0 path-generating contact-aided compliant mechanisms using the material mask overlay method. Journal of Mechanical Design 138(6)
[15] Kumar P, Saxena A, Sauer RA (2019) Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact. Journal of Mechanical Design 141(1)
[16] Kumar P, Frouws J, Langelaar M (2020) Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Structural and Multidisciplinary Optimization 61(4)
[17] Kumar, P.; Sauer, RA; Saxena, A., On topology optimization of large deformation contact-aided shape morphing compliant mechanisms, Mechanism and Machine Theory, 156, 104135 (2021) · doi:10.1016/j.mechmachtheory.2020.104135
[18] Langelaar, M., The use of convex uniform honeycomb tessellations in structural topology optimization, 7th world congress on structural and multidisciplinary optimization, 21-25 (2007), South Korea: Seoul, South Korea
[19] Lyness, J.; Monegato, G., Quadrature rules for regions having regular hexagonal symmetry, SIAM Journal on Numerical Analysis, 14, 2, 283-295 (1977) · Zbl 0365.65014 · doi:10.1137/0714018
[20] Picelli R, Sivapuram R, Xie YM (2020) A 101-line matlab code for topology optimization using binary variables and integer programming. Structural and Multidisciplinary Optimization pp 1-20
[21] Sanders, ED; Pereira, A.; Aguiló, MA; Paulino, GH, Polymat: an efficient matlab code for multi-material topology optimization, Structural and Multidisciplinary Optimization, 58, 6, 2727-2759 (2018) · doi:10.1007/s00158-018-2094-0
[22] Saxena, A., Topology design with negative masks using gradient search, Structural and Multidisciplinary Optimization, 44, 5, 629-649 (2011) · doi:10.1007/s00158-011-0649-4
[23] Saxena, A.; Sauer, RA, Combined gradient-stochastic optimization with negative circular masks for large deformation topologies, International Journal for Numerical Methods in Engineering, 93, 6, 635-663 (2013) · Zbl 1352.74249 · doi:10.1002/nme.4401
[24] Saxena, R.; Saxena, A., On honeycomb parameterization for topology optimization of compliant mechanisms, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 37009, 975-985 (2003)
[25] Saxena, R.; Saxena, A., On honeycomb representation and sigmoid material assignment in optimal topology synthesis of compliant mechanisms, Finite Elements in Analysis and Design, 43, 14, 1082-1098 (2007) · doi:10.1016/j.finel.2007.08.004
[26] Sigmund, O., On the design of compliant mechanisms using topology optimization, Journal of Structural Mechanics, 25, 4, 493-524 (1997)
[27] Sigmund, O., A 99 line topology optimization code written in matlab, Structural and multidisciplinary optimization, 21, 2, 120-127 (2001) · doi:10.1007/s001580050176
[28] Sigmund, O., Morphology-based black and white filters for topology optimization, Structural and Multidisciplinary Optimization, 33, 4-5, 401-424 (2007) · doi:10.1007/s00158-006-0087-x
[29] Sigmund, O.; Maute, K., Topology optimization approaches, Structural and Multidisciplinary Optimization, 48, 6, 1031-1055 (2013) · doi:10.1007/s00158-013-0978-6
[30] Singh, N.; Kumar, P.; Saxena, A., On topology optimization with elliptical masks and honeycomb tessellation with explicit length scale constraints, Structural and Multidisciplinary Optimization, 62, 3, 1227-1251 (2020) · doi:10.1007/s00158-020-02548-w
[31] Sukumar, N.; Tabarraei, A., Conforming polygonal finite elements, International Journal for Numerical Methods in Engineering, 61, 12, 2045-2066 (2004) · Zbl 1073.65563 · doi:10.1002/nme.1141
[32] Suresh, K., A 199-line matlab code for pareto-optimal tracing in topology optimization, Structural and Multidisciplinary Optimization, 42, 5, 665-679 (2010) · Zbl 1274.74005 · doi:10.1007/s00158-010-0534-6
[33] Svanberg, K., The method of moving asymptotes-a new method for structural optimization, International journal for numerical methods in engineering, 24, 2, 359-373 (1987) · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[34] Tabarraei, A.; Sukumar, N., Application of polygonal finite elements in linear elasticity, International Journal of Computational Methods, 3, 4, 503-520 (2006) · Zbl 1198.74104 · doi:10.1142/S021987620600117X
[35] Talischi, C.; Paulino, GH; Le, CH, Honeycomb wachspress finite elements for structural topology optimization, Structural and Multidisciplinary Optimization, 37, 6, 569-583 (2009) · Zbl 1274.74452 · doi:10.1007/s00158-008-0261-4
[36] Talischi, C.; Paulino, GH; Pereira, A.; Menezes, IF, Polymesher: a general-purpose mesh generator for polygonal elements written in matlab, Structural and Multidisciplinary Optimization, 45, 3, 309-328 (2012) · Zbl 1274.74401 · doi:10.1007/s00158-011-0706-z
[37] Talischi, C.; Paulino, GH; Pereira, A.; Menezes, IF, Polytop: a matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes, Structural and Multidisciplinary Optimization, 45, 3, 329-357 (2012) · Zbl 1274.74402 · doi:10.1007/s00158-011-0696-x
[38] Wachspress EL (1975) A rational finite element basis · Zbl 0322.65001
[39] Wang C, Zhao Z, Zhou M, Sigmund O, Zhang XS (2021) A comprehensive review of educational articles on structural and multidisciplinary optimization. Structural and Multidisciplinary Optimization pp 1-54
[40] Wang, F.; Lazarov, BS; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Structural and Multidisciplinary Optimization, 43, 6, 767-784 (2011) · Zbl 1274.74409 · doi:10.1007/s00158-010-0602-y
[41] Wei, P.; Li, Z.; Li, X.; Wang, MY, An 88-line matlab code for the parameterized level set method based topology optimization using radial basis functions, Structural and Multidisciplinary Optimization, 58, 2, 831-849 (2018) · doi:10.1007/s00158-018-1904-8
[42] Xu, B.; Han, Y.; Zhao, L., Bi-directional evolutionary topology optimization of geometrically nonlinear continuum structures with stress constraints, Applied Mathematical Modelling, 80, 771-791 (2020) · Zbl 1481.74628 · doi:10.1016/j.apm.2019.12.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.