×

On the order of a non-abelian representation group of a slim dense near hexagon. (English) Zbl 1226.05269

Summary: In this paper we study the possible orders of a non-abelian representation group of a slim dense near hexagon. We prove that if the representation group \(R\) of a slim dense near hexagon \(S\) is non-abelian, then \(R\) is a 2-group of exponent 4 and \(|R|=2^{\beta}, 1+NPdim(S)\leq \beta \leq 1+dimV(S)\), where \(NPdim(S)\) is the near polygon embedding dimension of \(S\) and \(dimV(S)\) is the dimension of the universal representation module \(V(S)\) of \(S\). Further, if \(\beta =1+NPdim(S)\), then \(R\) is necessarily an extraspecial 2-group. In that case, we determine the type of the extraspecial 2-group in each case. We also deduce that the universal representation group of \(S\) is a central product of an extraspecial 2-group and an abelian 2-group of exponent at most 4.

MSC:

05E99 Algebraic combinatorics
05B25 Combinatorial aspects of finite geometries
51E12 Generalized quadrangles and generalized polygons in finite geometry

References:

[1] Brouwer, A.E., Cohen, A.M., Hall, J.I., Wilbrink, H.A.: Near polygons and Fischer spaces. Geom. Dedicata 49(3), 349-368 (1994) · Zbl 0801.51012 · doi:10.1007/BF01264034
[2] Brouwer, A.E., Wilbrink, H.A.: The structure of near polygons with quads. Geom. Dedicata 14(2), 145-176 (1983) · Zbl 0521.51013 · doi:10.1007/BF00181622
[3] Cameron, P.J.: Projective and polar spaces. Available from http://www.maths.qmul.ac.uk/ pjc/
[4] De Bruyn, B.: Near Polygons. Frontiers in Mathematics. Birkhäuser, Basel (2006) · Zbl 1102.51007
[5] De Bruyn, B., Vandecasteele, P.: Near polygons with a nice chain of sub-near polygons. J. Combin. Theory Ser. A 108(2), 297-311 (2004) · Zbl 1061.51002 · doi:10.1016/j.jcta.2004.07.004
[6] De Bruyn, B., Vandecasteele, P.: The classification of the slim dense near octagons. European J. Combin. 28(1), 410-428 (2007) · Zbl 1107.05019 · doi:10.1016/j.ejc.2005.06.002
[7] Doerk, K., Hawkes, T.: Finite Soluble Groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter & Co., Berlin (1992) · Zbl 0753.20001
[8] Ivanov, A.A.: Non-abelian representations of geometries. Groups and combinatorics—in memory of Michio Suzuki. Adv. Stud. Pure Math. 32, 301-314 (2001) Math. Soc. Japan, Tokyo · Zbl 1004.51015
[9] Ivanov, A.A., Pasechnik, D.V., Shpectorov, S.V.: Non-abelian representations of some sporadic geometries. J. Algebra 181(2), 523-557 (1996) · Zbl 0853.51008 · doi:10.1006/jabr.1996.0132
[10] Payne, S.E., Thas, J.A.: Finite Generalized Quadrangles. Research Notes in Mathematics, vol. 110. Pitman (Advanced Publishing Program), Boston (1984) · Zbl 0551.05027
[11] Ronan, M.A.: Embeddings and hyperplanes of discrete geometries. European J. Combin. 8(2), 179-185 (1987) · Zbl 0624.51007
[12] Sahoo, B.K., Sastry, N.S.N.: A characterization of finite symplectic polar spaces of odd prime order. J. Combin. Theory Ser. A 114, 52-64 (2007) · Zbl 1115.51001 · doi:10.1016/j.jcta.2006.03.001
[13] Shult, E., Yanushka, A.: Near n-gons and line systems. Geom. Dedicata 9(1), 1-72 (1980) · Zbl 0433.51008 · doi:10.1007/BF00156473
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.