×

Polarized non-abelian representations of slim near-polar spaces. (English) Zbl 1342.05020

Summary: E. E. Shult [Bull. Belg. Math. Soc. - Simon Stevin 4, No. 2, 299–316 (1997; Zbl 0923.51013)], introduced a class of parapolar spaces, the so-called near-polar spaces. We introduce here the notion of a polarized non-abelian representation of a slim near-polar space, that is, a near-polar space in which every line is incident with precisely three points. For such a polarized non-abelian representation, we study the structure of the corresponding representation group, enabling us to generalize several of the results obtained in [B. K. Sahoo and N. S. Narasimha Sastry, J. Algebr. Comb. 29, No. 2, 195–213 (2009; Zbl 1226.05269)] for non-abelian representations of slim dense near hexagons. We show that with every polarized non-abelian representation of a slim near-polar space, there is an associated polarized projective embedding.

MSC:

05B25 Combinatorial aspects of finite geometries
51A45 Incidence structures embeddable into projective geometries
51A50 Polar geometry, symplectic spaces, orthogonal spaces
20F05 Generators, relations, and presentations of groups

References:

[1] Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathematics, vol. 10. Cambridge University Press, Cambridge (2000) · Zbl 0997.20001 · doi:10.1017/CBO9781139175319
[2] Blok, R.J., Cardinali, I., De Bruyn, B., Pasini, A.: Polarized and homogeneous embeddings of dual polar spaces. J. Algebraic Comb. 30, 381-399 (2009) · Zbl 1204.51003 · doi:10.1007/s10801-008-0166-8
[3] Brouwer, A.E., Shpectorov, S.V.: Dimensions of embeddings of near polygons. Unpublished manuscript · Zbl 1205.05035
[4] Cohen, A.M., Cooperstein, B.N.: A characterization of some geometries of Lie type. Geom. Dedicata 15, 73-105 (1983) · Zbl 0541.51010 · doi:10.1007/BF00146968
[5] De Bruyn, B.: Dual embeddings of dense near polygons. Ars Comb. 103, 33-54 (2012) · Zbl 1265.51002
[6] De Bruyn, B., Sahoo, B.K., Sastry, N.S.N.: Non-abelian representations of the slim dense near hexagons on 81 and 243 points. J. Algebraic Comb. 33, 127-140 (2011) · Zbl 1209.51002 · doi:10.1007/s10801-010-0237-5
[7] Doerk, K., Hawkes, T.: Finite Soluble Groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter & Co., Berlin (1992) · Zbl 0753.20001 · doi:10.1515/9783110870138
[8] Gorenstein, D.: Finite Groups. Chelsea Publishing Co., New York (1980) · Zbl 0463.20012
[9] Ivanov, A.A.: Non-abelian representations of geometries. “Groups and Combinatorics”—in memory of Michio Suzuki. Adv. Stud. Pure Math. 32, 301-314 (2001). (Math. Soc. Japan, Tokyo) · Zbl 1004.51015
[10] Ivanov, A.A., Pasechnik, D.V., Shpectorov, S.V.: Non-abelian representations of some sporadic geometries. J. Algebra 181, 523-557 (1996) · Zbl 0853.51008 · doi:10.1006/jabr.1996.0132
[11] Patra, K.L., Sahoo, B.K.: A non-abelian representation of the dual polar space \[DQ(2n,2)\] DQ(2n,2). Innov. Incid. Geom. 9, 177-188 (2009) · Zbl 1205.05035
[12] Ronan, M.A.: Embeddings and hyperplanes of discrete geometries. Eur. J. Comb. 8, 179-185 (1987) · Zbl 0624.51007 · doi:10.1016/S0195-6698(87)80009-4
[13] Sahoo, B.K., Sastry, N.S.N.: A characterization of finite symplectic polar spaces of odd prime order. J. Comb. Theory Ser. A 114, 52-64 (2007) · Zbl 1115.51001 · doi:10.1016/j.jcta.2006.03.001
[14] Sahoo, B.K., Sastry, N.S.N.: On the order of a non-abelian representation group of a slim dense near hexagon. J. Algebraic Comb. 29, 195-213 (2009) · Zbl 1226.05269 · doi:10.1007/s10801-008-0129-0
[15] Shult, E.E.: On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4, 299-316 (1997) · Zbl 0923.51013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.