×

Direct imaging for the moment tensor point sources of elastic waves. (English) Zbl 1537.65161

Summary: We investigate an inverse source problem of the time-harmonic elastic wave equation. Some novel sampling-type numerical schemes are proposed to identify the moment tensor point sources in the Lamé system from near-field measurements. Rigorous theoretical justifications are provided to show that the locations and moment tensors of the elastic sources can be uniquely determined from the multi-frequency displacement data. Several numerical examples are also presented to illustrate the validity and robustness of the proposed method.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
74J25 Inverse problems for waves in solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes

References:

[1] Abdelaziz, B.; El Badia, A.; El Hajj, A., Direct algorithm for multipolar sources reconstruction, J. Math. Anal. Appl., 428, 1, 306-336 (2015) · Zbl 1325.65149
[2] Aki, K.; Richards, P. G., Quantitative Seismology (2002), University Science Books: University Science Books Sausalito
[3] Albanese, R.; Monk, P., The inverse source problem for Maxwell’s equations, Inverse Probl., 22, 1023-1035 (2006) · Zbl 1099.35161
[4] Alves, C.; Martins, N. F.; Roberty, N., Identification and reconstruction of elastic body forces, Inverse Probl., 30, 5, Article 055015 pp. (2014) · Zbl 1291.74030
[5] Alzaalig, A.; Hu, G.; Liu, X.; Sun, J., Fast acoustic source imaging using multi-frequency sparse data, Inverse Probl., 36, 2, Article 025009 pp. (2019) · Zbl 1448.35566
[6] Ammari, H.; Bretin, E.; Garnier, J.; Jing, W.; Kang, H.; Wahab, A., Localization, stability, and resolution of topological derivative based imaging functionals in elasticity, SIAM J. Imaging Sci., 6, 4, 2174-2212 (2013) · Zbl 1281.35085
[7] Ammari, H.; Bretin, E.; Garnier, J.; Kang, H.; Lee, H.; Wahab, A., Mathematical Methods in Elasticity Imaging, vol. 52 (2015), Princeton University Press · Zbl 1332.35002
[8] Ammari, H.; Bretin, E.; Garnier, J.; Wahab, A., Time-reversal algorithms in viscoelastic media, Eur. J. Appl. Math., 24, 4, 565-600 (2013) · Zbl 1326.74068
[9] Angel, T.; Kirsch, A.; Kleinmann, R., Antenna control and generalized characteristic modes, Proc. IEEE, 79, 1559-1568 (1991)
[10] Arridge, S. R., Optical tomography in medical imaging, Inverse Probl., 15, R41-R93 (1999) · Zbl 0926.35155
[11] Bao, G.; Chen, C.; Li, P., Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55, 6, 2616-2643 (2017) · Zbl 1434.74071
[12] Bao, G.; Li, P.; Lin, J.; Triki, F., Inverse scattering problems with multi-frequencies, Inverse Probl., 31, 9, Article 093001 pp. (2015) · Zbl 1332.78019
[13] Bao, G.; Lu, S.; Rundell, W.; Xu, B., A recursive algorithm for multifrequency acoustic inverse source problems, SIAM J. Numer. Anal., 53, 3, 1608-1628 (2015) · Zbl 1321.65166
[14] Bleistein, N.; Cohen, J., Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., 18, 194-201 (1977) · Zbl 0379.76076
[15] Bousba, S.; Guo, Y.; Wang, X.; Li, L., Identifying multipolar acoustic sources by the direct sampling method, Appl. Anal., 99, 5, 856-879 (2020) · Zbl 1437.65170
[16] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2019), Springer: Springer Switzerland · Zbl 1425.35001
[17] Devaney, A.; Marengo, E.; Li, M., The inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., 67, 1353-1378 (2007) · Zbl 1130.45011
[18] El Badia, A.; Nara, T., Inverse dipole source problem for time-harmonic Maxwell equations: algebraic algorithm and Hölder stability, Inverse Probl., 29, 1, Article 015007 pp. (2013) · Zbl 1266.78004
[19] Eller, M.; Valdivia, N. P., Acoustic source identification using multiple frequency information, Inverse Probl., 25, Article 115005 pp. (2009) · Zbl 1181.35328
[20] Griesmaier, R.; Hanke, M.; Raasch, T., Inverse source problems for the Helmholtz equation and the windowed Fourier transform, SIAM J. Sci. Comput., 34, A1544-A1562 (2012) · Zbl 1251.35187
[21] Griesmaier, R.; Hanke, M.; Raasch, T., Inverse source problems for the Helmholtz equation and the windowed Fourier transform II, SIAM J. Sci. Comput., 35, A2188-A2206 (2013) · Zbl 1282.35412
[22] Griesmaier, R.; Schmiedecke, C., A factorization method for multifrequency inverse source problems with sparse far field measurements, SIAM J. Imaging Sci., 10, 4, 2119-2139 (2017) · Zbl 1401.35342
[23] Ji, X.; Liu, X.; Zhang, B., Phaseless inverse source scattering problem: phase retrieval, uniqueness and direct sampling methods, J. Comput. Phys. X, 1, Article 100003 pp. (2019) · Zbl 07783817
[24] Kupradze, V. D., Potential Methods in the Theory of Elasticity (1965), Israel Program for Scientific Translations: Israel Program for Scientific Translations Jerusalem · Zbl 0188.56901
[25] Kupradze, V. D.; Gegelia, T. G.; Basheleishvili, M. O.; Burchuladze, T. V., Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (1979), North-Holland: North-Holland Amsterdam · Zbl 0406.73001
[26] Kusiak, S.; Sylvester, J., The scattering support, Commun. Pure Appl. Math., 56, 1525-1548 (2003) · Zbl 1037.35099
[27] Kusiak, S.; Sylvester, J., The convex scattering support in a background medium, SIAM J. Math. Anal., 36, 1142-1158 (2005) · Zbl 1072.81060
[28] Ling, L.; Hon, Y. C.; Yamamoto, M., Inverse source identification for Poisson equation, Inverse Probl. Sci. Eng., 13, 4, 433-447 (2005) · Zbl 1194.65130
[29] Li, J.; Liu, H.; Zou, J., Multilevel linear sampling method for inverse scattering problems, SIAM J. Sci. Comput., 30, 3, 1228-1250 (2008) · Zbl 1167.78007
[30] Liu, K., Near-field imaging of inhomogeneities in a stratified ocean waveguide, J. Comput. Phys., 398, Article 108901 pp. (2019) · Zbl 1453.65394
[31] Liu, H.; Uhlmann, G., Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Probl., 31, 10, Article 105005 pp. (2015) · Zbl 1328.35316
[32] Long, Q.; Motamed, M.; Tempone, R., Fast Bayesian optimal experimental design for seismic source inversion, Comput. Methods Appl. Mech. Eng., 291, 123-145 (2015) · Zbl 1423.74006
[33] Sjögreen, B.; Petersson, N. A., Source estimation by full wave form inversion, J. Sci. Comput., 59, 247-276 (2014) · Zbl 1303.65080
[34] Song, F.; Toksöz, M. N., Full-waveform based complete moment tensor inversion and source parameter estimation from down hole seismic data for hydrofracture monitoring, Geophysics, 76, 6, WC103-WC116 (2011)
[35] Valdivia, N. P., Electromagnetic source identification using multiple frequency information, Inverse Probl., 28, 11, Article 115002 pp. (2012) · Zbl 1259.78014
[36] Wang, X.; Guo, Y.; Zhang, D.; Liu, H., Fourier method for recovering acoustic sources from multi-frequency far-field data, Inverse Probl., 33, 3, Article 035001 pp. (2017) · Zbl 1401.35352
[37] Wang, G.; Ma, F.; Guo, Y.; Li, J., Solving the multi-frequency electromagnetic inverse source problem by the Fourier method, J. Differ. Equ., 265, 1, 417-443 (2018) · Zbl 1388.78005
[38] Yoo, J.; Jung, Y.; Lim, M.; Ye, J.; Wahab, A., A joint sparse recovery framework for accurate reconstruction of inclusions in elastic media, SIAM J. Imaging Sci., 10, 3, 1104-1138 (2017) · Zbl 1391.35428
[39] Yoo, J.; Wahab, A.; Ye, J., A mathematical framework for deep learning in elastic source imaging, SIAM J. Appl. Math., 78, 5, 2791-2818 (2018) · Zbl 1400.35234
[40] Zhang, D.; Guo, Y., Fourier method for solving the multi-frequency inverse source problem for the Helmholtz equation, Inverse Probl., 31, 3, Article 035007 pp. (2015) · Zbl 1325.35288
[41] Zhang, D.; Guo, Y.; Li, J.; Liu, H., Locating multiple multipolar acoustic sources using the direct sampling method, Commun. Comput. Phys., 25, 5, 1328-1356 (2019) · Zbl 1473.65275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.