×

Radial discrete PDE splines on Lipschitz domains. (English) Zbl 1428.65099

The authors use radial basis functions for the construction and characterization of discrete elliptic partial differential equation splines for some general domains such as Lipschitz domains for arbitrary dimensions. The authors provide a convergence proof and estimates for the approximation error.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
35J30 Higher-order elliptic equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Apprato, D.; Gout, C.; Sénéchal, P., Ck-reconstruction of surfaces from partial data, Math. Geol., 32, 8, 969-983 (2000) · Zbl 0971.86001
[2] Arcangéli, R.; de Silanes, M. C.L.; Torrens, J. J., Multidimensional Minimizing Splines. Theory and Applications (2004), Kluwer Academic Publishers · Zbl 1064.41001
[3] Atkinson, K.; Han, W., Theoretical Numerical Analysis: A Functional Analysis Framework (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0966.65001
[4] Bloor, M. I.G.; Wilson, M. J., Representing PDE surfaces in terms of b-splines, Comput. Aided Design, 22, 6, 324-331 (1990) · Zbl 0706.65006
[5] Braun, M., Differential Equations and Their Applications (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0528.34001
[6] Brézis, H., Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise (1983), Masson: Masson Paris · Zbl 0511.46001
[7] Buhmann, M. D., Radial Basis Functions: Theory and Implementations (2003), Cambridge University Press · Zbl 1038.41001
[8] Buhmann, M. D.; Feng, H., On the convergence of cardinal interpolation by parameterized radial basis functions, J. Math. Anal. Appl., 449, 1, 718-733 (2017) · Zbl 1367.41001
[9] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland · Zbl 0383.65058
[10] Fasshauer, G., Meshfree Aproximation Methods with MATLAB (2007), World Scientific Publishing Company · Zbl 1123.65001
[11] Jones, D. S., The Theory of Generalised Functions (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0477.46035
[12] Necas, J., Direct Methods in the Theory of Elliptic Equation, Springer Monographs in Mathematics (2012), Springer-Verlag Berlin Heidelberg · Zbl 1246.35005
[13] Pasadas, M.; Rodríguez, M. L., Multivariate approximation by PDE splines, J. Comput. Appl. Math., 218, 2, 556-567 (2008) · Zbl 1146.65020
[14] Pasadas, M.; Rodríguez, M. L., Construction and approximation of surfaces by discrete PDE splines on a polygonal domain, Appl. Numer. Math., 59, 1, 205-218 (2009) · Zbl 1167.65009
[15] Rodríguez, M. L., Aproximación de curvas y superficies a partir de problemas de contorno mediante métodos variacionales. Aplicaciones (2005), Universidad de Granada, Ph.D. thesis
[16] Wendland, H., Meshless Galerkin methods using radial basis functions, Math. Comp., 68, 228, 1521-1531 (1999) · Zbl 1020.65084
[17] Wendland, H., Numerical solution of variational problems by radial basis functions, (Chui, Charles K.; Schumaker, Larry L., Approximation Theory IX (1999), Vanderbilt University Press), 361-368 · Zbl 0917.65089
[18] Wendland, H., Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1075.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.