×

Multivariate approximation by PDE splines. (English) Zbl 1146.65020

Starting from the data point set characterizing a surface and from the elliptic partial differential equation (PDE) that describes a certain physical phenomenon the authors present the approximation method managing the fitting of the data points by least squares and the solution of the PDE. The so-called PDE spline is the solution of a minimization problem in a convex set in a Sobolev space. This solution is obtained using the method of Lagrangian multipliers.
The main purpose of this paper is to prove the existence, the uniqueness and the convergence of the solution in question. The authors present an example to illustrate this fitting method employing the finite-difference discretization to solve PDEs numerically.

MSC:

65D10 Numerical smoothing, curve fitting
65D07 Numerical computation using splines
65D17 Computer-aided design (modeling of curves and surfaces)
65D15 Algorithms for approximation of functions
Full Text: DOI

References:

[1] Atkinson, K. E., An Introduction to Numerical Analysis (2001), Wiley: Wiley New York
[2] Bloor, M. I.G.; Wilson, M. J., Blend design as a boundary-value problem, (Straßer, W.; Seidel, H. P., Theory and Practice of Geometric Modelling (1989), Springer: Springer Berlin), 221-234 · Zbl 0692.68070
[3] Bloor, M. I.G.; Wilson, M. J., Generating parametrization of wing geometries using partial differential equations, Comput. Methods Appl. Mech. Eng., 148, 125-138 (1997) · Zbl 0923.76069
[4] Bloor, M. I.G.; Wilson, M. J.; Hagen, H., The smoothing properties of variational schemes for surface design, Comput. Aided Geom. Design, 12, 381-394 (1995) · Zbl 0875.68933
[5] Brézis, H., Analyse Fonctionnelle. Théorie et Applications (1983), Masson: Masson Paris · Zbl 0511.46001
[6] Brown, J. M.; Bloor, M. I.G.; Bloor, M. S.; Wilson, M. J., The accuracy of \(B\)-spline finite element approximation to PDE surfaces, Comput. Methods Appl. Mech. Eng., 158, 221-234 (1998) · Zbl 0940.65014
[7] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[8] Craven, P.; Wahba, G., Smoothing noisy data with splines functions, Numer. Math., 31, 377-403 (1979) · Zbl 0377.65007
[9] H. Du, H. Qin, Integrating physics-based modeling with PDE solids for geometric design, in: Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2001), 2001.; H. Du, H. Qin, Integrating physics-based modeling with PDE solids for geometric design, in: Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications (Pacific Graphics 2001), 2001.
[10] Duchon, J., Sur l’erreur d’interpolation des fonctions de plusieurs variables par les \(D^m\)-splines, RAIRO Anal. Numer., 12, 325-334 (1978) · Zbl 0403.41003
[11] Greiner, G., Blending surfaces with minimal curvature, (Straßer, W.; Wahl, F., Graphics and Robotics (1995), Springer: Springer Berlin), 163-174
[12] Guan, D. J.; Li, Z. C.; Chen, Y. L.; Chuang, J. H., Wire-frame method for blending surface design, Proc. Natl. Sci. Coun. ROC(A), 23, 20-30 (1999)
[13] Hoffmann, C.; Hopcroft, J., The potential method for blending surfaces and corners, (Farin, G., Geometric Modeling (1987), SIAM: SIAM Philadelphia, PA), 347-365
[14] Kouibia, A.; Pasadas, M., Smoothing variational splines, Appl. Math. Lett., 13, 71-75 (2000) · Zbl 0973.41004
[15] Kouibia, A.; Pasadas, M.; Rodríguez, M. L., Construction of ODE curves, Numer. Algorithms, 34, 367-377 (2003) · Zbl 1038.65012
[16] López de Silanes, M. C.; Arcangéli, R., Estimations de l’erreur d’approximation par splines d’interpolation et d’ajustement d’ordre \((m, s)\), Numer. Math., 56, 449-468 (1989) · Zbl 0714.41025
[17] López de Silanes, M. C.; Arcangéli, R., Sur la convergence des \(D^m\)-splines d’ajustement pour des données exactes ou bruitées, Rev. Mat. Complut., 4, 279-284 (1991) · Zbl 0752.41011
[18] Strang, G., Approximation in the finite element method, Numer. Math., 19, 81-98 (1972) · Zbl 0221.65174
[19] G. Wahba, Spline models for observational data, Society for Industrial and Applied Mathematics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, University at Columbus, 1990.; G. Wahba, Spline models for observational data, Society for Industrial and Applied Mathematics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, University at Columbus, 1990. · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.