×

Hilbert series, machine learning, and applications to physics. (English) Zbl 1487.81035

Summary: We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to \(\sim 1\) mean absolute error, whilst classifiers predict dimension and Gorenstein index to \(> 90\)% accuracy with \(\sim 0.5\)% standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding 95%. Neural networks (NNs) exhibited success identifying HS from a Gorenstein ring to the same order of accuracy, whilst generation of “fake” HS proved trivial for NNs to distinguish from those associated to the three-dimensional Fano varieties considered.

MSC:

81P68 Quantum computation
68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning
16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
81P73 Computational stability and error-correcting codes for quantum computation and communication processing

References:

[1] Benvenuti, S.; Feng, B.; Hanany, A.; He, Y.-H., Counting BPS operators in gauge theories: quivers, syzygies and plethystics, J. High Energy Phys., 11, Article 050 pp. (2007) · Zbl 1245.81264
[2] Feng, B.; Hanany, A.; He, Y.-H., Counting gauge invariants: the plethystic program, J. High Energy Phys., 3, Article 090 pp. (2007)
[3] Gray, J.; He, Y.-H.; Hanany, A.; Mekareeya, N.; Jejjala, V., SQCD: a geometric aperçu, J. High Energy Phys., 2008, 05, 099 (May 2008)
[4] Hanany, A.; Mekareeya, N.; Torri, G., The Hilbert series of adjoint SQCD, Nucl. Phys. B, 825, 1-2, 52-97 (2010) · Zbl 1196.81236
[5] Chen, Y.; Mekareeya, N., The Hilbert series of U/SU SQCD and Toeplitz determinants, Nucl. Phys. B, 850, 3, 553-593 (2011) · Zbl 1229.81300
[6] Jokela, N.; Järvinen, M.; Keski-Vakkuri, E., New results for the SQCD Hilbert series, J. High Energy Phys., 3, Article 048 pp. (2012), front matter+30 · Zbl 1309.81278
[7] Benvenuti, S.; Hanany, A.; Mekareeya, N., The Hilbert series of the one instanton moduli space, J. High Energy Phys., 6, Article 100 pp. (2010) · Zbl 1288.81074
[8] Hanany, A.; Mekareeya, N.; Razamat, S. S., Hilbert series for moduli spaces of two instantons, J. High Energy Phys., 1, Article 070 pp. (2013), front matter + 48 · Zbl 1342.81494
[9] Buchbinder, E. I.; Lukas, A.; Ovrut, B. A.; Ruehle, F., Instantons and Hilbert functions, Phys. Rev. D, 102, 2, Article 026019 pp. (2020)
[10] Hanany, A.; Jenkins, E. E.; Manohar, A. V.; Torri, G., Hilbert series for flavor invariants of the standard model, J. High Energy Phys., 3, Article 096 pp. (2011) · Zbl 1301.81345
[11] Lehman, L.; Martin, A., Low-derivative operators of the standard model effective field theory via Hilbert series methods, J. High Energy Phys., 02, 81 (2016) · Zbl 1388.81341
[12] Braun, V., Counting points and Hilbert series in string theory, (Strings, Gauge Fields, and the Geometry Behind (2013), World Sci. Publ.: World Sci. Publ. Hackensack, NJ), 225-235
[13] Lehman, L.; Martin, A., Hilbert series for constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev. D, 91, Article 105014 pp. (May 2015)
[14] Henning, B.; Lu, X.; Melia, T.; Murayama, H., Hilbert series and operator bases with derivatives in effective field theories, Commun. Math. Phys., 347, 2, 363-388 (2016) · Zbl 1350.81021
[15] Kobach, A.; Pal, S., Hilbert series and operator basis for NRQED and NRQCD/HQET, Phys. Lett. B, 772, 225-231 (2017) · Zbl 1379.81053
[16] Anisha; Das Bakshi, S.; Chakrabortty, J.; Prakash, S., Hilbert series and plethystics: paving the path towards 2HDM- and MLRSM-EFT, J. High Energy Phys., 9, Article 035 pp. (2019)
[17] Marinissen, C. B.; Rahn, R.; Waalewijn, W. J., …, 83106786, 114382724, 1509048322, 2343463290, 27410087742, … efficient Hilbert series for effective theories, Phys. Lett. B, 808, Article 135632 pp. (2020) · Zbl 1473.81248
[18] Graf, L.; Henning, B.; Lu, X.; Melia, T.; Murayama, H., 2, 12, 117, 1959, 45171, 1170086, …: a Hilbert series for the QCD chiral Lagrangian, J. High Energy Phys., 01, Article 142 pp. (2021)
[19] He, Y.-H., Deep-learning the landscape (2017)
[20] He, Y.-H., The Calabi-Yau landscape: from geometry, to physics, to machine-learning (2018)
[21] Davies, A.; Veličković, P.; Buesing, L.; Blackwell, S.; Zheng, D.; Tomašev, N.; Tanburn, R.; Battaglia, P.; Blundell, C.; Juhász, A.; Lackenby, M.; Williamson, G.; Hassabis, D.; Kohli, P., Advancing mathematics by guiding human intuition with AI, Nature, 600, 70-74 (2021) · Zbl 1505.57001
[22] He, Y.-H., Machine-learning the string landscape, Phys. Lett. B, 774, 564-568 (2017)
[23] Krefl, D.; Seong, R.-K., Machine learning of Calabi-Yau volumes, Phys. Rev. D, 96, 6, Article 066014 pp. (2017)
[24] Ruehle, F., Evolving neural networks with genetic algorithms to study the string landscape, J. High Energy Phys., 8, Article 038 pp. (2017), front matter+19 · Zbl 1381.83128
[25] Carifio, J.; Halverson, J.; Krioukov, D.; Nelson, B. D., Machine learning in the string landscape, J. High Energy Phys., 9, Article 157 pp. (2017), front matter+35 · Zbl 1382.81155
[26] Brodie, C. R.; Constantin, A.; Deen, R.; Lukas, A., Machine learning line bundle cohomology, Fortschr. Phys., 68, 1, Article 1900087 pp. (2020) · Zbl 1535.32024
[27] Larfors, M.; Schneider, R., Explore and exploit with heterotic line bundle models, Fortschr. Phys., 68, 5, Article 2000034 pp. (2020) · Zbl 1537.81008
[28] He, Y.-H.; Lee, S.-J., Distinguishing elliptic fibrations with AI, Phys. Lett. B, 798, Article 134889 pp. (2019)
[29] Bull, K.; He, Y.-H.; Jejjala, V.; Mishra, C., Machine learning CICY threefolds, Phys. Lett. B, 785, 65-72 (2018)
[30] Ashmore, A.; He, Y.-H.; Ovrut, B. A., Machine learning Calabi-Yau metrics, Fortschr. Phys., 68, 9, Article 2000068 pp. (2020) · Zbl 1537.53003
[31] He, Y.-H.; Kim, M., Learning algebraic structures: preliminary investigations (2019)
[32] Alessandretti, L.; Baronchelli, A.; He, Y.-H., Machine learning meets number theory: the data science of Birch-Swinnerton-Dyer (2019)
[33] He, Y.-H.; Hirst, E.; Peterken, T., Machine-learning dessins d’enfants: explorations via modular and Seiberg-Witten curves, J. Phys. A, 54, 7, Article 075401 pp. (2021) · Zbl 1519.14058
[34] He, Y.-H.; Lee, K.-H.; Oliver, T., Machine-learning the Sato-Tate conjecture (2020)
[35] Bao, J.; Franco, S.; He, Y.-H.; Hirst, E.; Musiker, G.; Xiao, Y., Quiver mutations, Seiberg duality and machine learning, Phys. Rev. D, 102, 8, Article 086013 pp. (2020)
[36] Gal, Y.; Jejjala, V.; Pena, D. K.M.; Mishra, C., Baryons from mesons: a machine learning perspective (2020)
[37] Deen, R.; He, Y.-H.; Lee, S.-J.; Lukas, A., Machine learning string standard models (2020)
[38] Halverson, J.; Nelson, B.; Ruehle, F., Branes with brains: exploring string vacua with deep reinforcement learning, J. High Energy Phys., 6, Article 003 pp. (2019) · Zbl 1416.83125
[39] Halverson, J.; Long, C., Statistical predictions in string theory and deep generative models, Fortschr. Phys., 68, 5, Article 2000005 pp. (2020) · Zbl 07763959
[40] He, Y.-H.; Yau, S.-T., Graph Laplacians, Riemannian manifolds and their machine-learning (2020)
[41] Altınok, S.; Brown, G.; Reid, M., Fano 3-folds, K3 surfaces and graded rings, (Topology and Geometry: Commemorating SISTAG. Topology and Geometry: Commemorating SISTAG, Contemp. Math., vol. 314 (2002), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 25-53 · Zbl 1047.14026
[42] Brown, G.; Kasprzyk, A. M., Kawamata boundedness for Fano threefolds and the graded ring database (2022)
[43] Brown, G.; Kasprzyk, A. M., The graded ring database, Online
[44] Brown, G.; Kasprzyk, A. M., The Fano 3-fold database (2022), Zenodo
[45] Harris, J., Algebraic Geometry. A First Course, Corrected Reprint of the 1992 Original, Graduate Texts in Mathematics, vol. 133 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0779.14001
[46] Dolgachev, I., Weighted projective varieties, (Group Actions and Vector Fields. Group Actions and Vector Fields, Vancouver, B.C., 1981. Group Actions and Vector Fields. Group Actions and Vector Fields, Vancouver, B.C., 1981, Lecture Notes in Math., vol. 956 (1982), Springer: Springer Berlin), 34-71 · Zbl 0516.14014
[47] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass., London, Don Mills, Ont. · Zbl 0175.03601
[48] Stanley, R. P., Hilbert functions of graded algebras, Adv. Math., 28, 57-83 (1978) · Zbl 0384.13012
[49] Buccella, F.; Derendinger, J. P.; Ferrara, S.; Savoy, C. A., Patterns of symmetry breaking in supersymmetric gauge theories, Phys. Lett. B, 115, 5, 375-379 (1982)
[50] Luty, M. A.; Taylor, W., Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev. D (3), 53, 6, 3399-3405 (1996)
[51] Mehta, D.; He, Y.-H.; Hauenstein, J. D., Numerical algebraic geometry: a new perspective on gauge and string theories, J. High Energy Phys., 7, Article 018 pp. (2012), front matter+31 · Zbl 1397.81271
[52] Hanany, A.; Mekareeya, N.; Razamat, S. S., Hilbert series for moduli spaces of two instantons, J. High Energy Phys., 1, Article 070 pp. (2013), front matter + 48 · Zbl 1342.81494
[53] Cremonesi, S.; Hanany, A.; Zaffaroni, A., Monopole operators and Hilbert series of Coulomb branches of 3d \(\mathcal{N} = 4\) gauge theories, J. High Energy Phys., 5 (2014)
[54] Cremonesi, S.; Hanany, A.; Mekareeya, N.; Zaffaroni, A., Coulomb branch Hilbert series and Hall-Littlewood polynomials, J. High Energy Phys., 178 (2014)
[55] He, Y.-H.; Jejjala, V.; Matti, C.; Nelson, B. D., Veronese geometry and the electroweak vacuum moduli space, Phys. Lett. B, 736, 20-25 (2014) · Zbl 1317.81263
[56] Xiao, Y.; He, Y.-H.; Matti, C., Standard model plethystics, Phys. Rev. D, 100, Article 076001 pp. (Oct. 2019)
[57] Abadi, M., TensorFlow: large-scale machine learning on heterogeneous systems (2015), Online
[58] Buckley, A.; Reid, M.; Zhou, S., Ice cream and orbifold Riemann-Roch, Izv. Ross. Akad. Nauk Ser. Mat., 77, 3, 29-54 (2013) · Zbl 1273.14023
[59] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Springer Series in Statistics (2009), Springer: Springer New York · Zbl 1273.62005
[60] Kingma, D. P.; Ba, J., Adam: a method for stochastic optimization (2014)
[61] Candelas, P.; Dale, A. M.; Lütken, C. A.; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys. B, 298, 3, 493-525 (1988)
[62] Anderson, L. B.; He, Y.-H.; Lukas, A., Heterotic compactification, an algorithmic approach, J. High Energy Phys., 7, Article 049 pp. (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.