×

Causality bounds on scalar-tensor EFTs. (English) Zbl 07774740

Summary: We compute the causality/positivity bounds on the Wilson coefficients of scalar-tensor effective field theories. Two-sided bounds are obtained by extracting IR information from UV physics via dispersion relations of scattering amplitudes, making use of the full crossing symmetry. The graviton \(t\)-channel pole is carefully treated in the numerical optimization, taking into account the constraints with fixed impact parameters. It is shown that the typical sizes of the Wilson coefficients can be estimated by simply inspecting the dispersion relations. We carve out sharp bounds on the leading coefficients, particularly, the scalar-Gauss-Bonnet couplings, and discuss how some bounds vary with the leading \((\partial\varphi)^4\) coefficient and as well as phenomenological implications of the causality bounds.

MSC:

81-XX Quantum theory

Software:

GNU parallel; SDPB

References:

[1] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge Univ. Press, Cambridge (1966) [INSPIRE]. · Zbl 0139.46204
[2] C. de Rham et al., Snowmass White Paper: UV Constraints on IR Physics, in the proceedings of the Snowmass 2021, (2022) [arXiv:2203.06805] [INSPIRE].
[3] Adams, A., Causality, analyticity and an IR obstruction to UV completion, JHEP, 10, 014 (2006) · doi:10.1088/1126-6708/2006/10/014
[4] C. Zhang and S.-Y. Zhou, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett.125 (2020) 201601 [arXiv:2005.03047] [INSPIRE].
[5] B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP09 (2014) 100 [arXiv:1405.2960] [INSPIRE]. · Zbl 1333.81182
[6] X. Li et al., Positivity in Multifield Effective Field Theories, Phys. Rev. Lett.127 (2021) 121601 [arXiv:2101.01191] [INSPIRE].
[7] C. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D100 (2019) 095003 [arXiv:1808.00010] [INSPIRE].
[8] Bi, Q.; Zhang, C.; Zhou, S-Y, Positivity constraints on aQGC: carving out the physical parameter space, JHEP, 06, 137 (2019) · doi:10.1007/JHEP06(2019)137
[9] B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].
[10] Remmen, GN; Rodd, NL, Consistency of the Standard Model Effective Field Theory, JHEP, 12, 032 (2019) · doi:10.1007/JHEP12(2019)032
[11] Yamashita, K.; Zhang, C.; Zhou, S-Y, Elastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatterings, JHEP, 01, 095 (2021) · doi:10.1007/JHEP01(2021)095
[12] Trott, T., Causality, unitarity and symmetry in effective field theory, JHEP, 07, 143 (2021) · doi:10.1007/JHEP07(2021)143
[13] G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett.125 (2020) 081601 [Erratum ibid.127 (2021) 149901] [arXiv:2004.02885] [INSPIRE].
[14] Bonnefoy, Q.; Gendy, E.; Grojean, C., Positivity bounds on Minimal Flavor Violation, JHEP, 04, 115 (2021) · doi:10.1007/JHEP04(2021)115
[15] Davighi, J.; Melville, S.; You, T., Natural selection rules: new positivity bounds for massive spinning particles, JHEP, 02, 167 (2022) · Zbl 1522.81205 · doi:10.1007/JHEP02(2022)167
[16] Chala, M.; Santiago, J., Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D, 105, L111901 (2022) · doi:10.1103/PhysRevD.105.L111901
[17] Li, X.; Zhou, S., Origin of neutrino masses on the convex cone of positivity bounds, Phys. Rev. D, 107, L031902 (2023) · doi:10.1103/PhysRevD.107.L031902
[18] Ghosh, D.; Sharma, R.; Ullah, F., Amplitude’s positivity vs. subluminality: causality and unitarity constraints on dimension 6 & 8 gluonic operators in the SMEFT, JHEP, 02, 199 (2023) · Zbl 1541.81103 · doi:10.1007/JHEP02(2023)199
[19] Remmen, GN; Rodd, NL, Spinning sum rules for the dimension-six SMEFT, JHEP, 09, 030 (2022) · Zbl 1531.81148 · doi:10.1007/JHEP09(2022)030
[20] B. Fuks, Y. Liu, C. Zhang and S.-Y. Zhou, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C45 (2021) 023108 [arXiv:2009.02212] [INSPIRE].
[21] J. Gu, L.-T. Wang and C. Zhang, Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett.129 (2022) 011805 [arXiv:2011.03055] [INSPIRE].
[22] Li, X., Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics, JHEP, 10, 107 (2022) · doi:10.1007/JHEP10(2022)107
[23] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Reverse Bootstrapping: IR Lessons for UV Physics, Phys. Rev. Lett.128 (2022) 051602 [arXiv:2111.09226] [INSPIRE].
[24] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D103 (2021) 125020 [arXiv:2012.05798] [INSPIRE].
[25] Arkani-Hamed, N.; Huang, T-C; Huang, Y-T, The EFT-Hedron, JHEP, 05, 259 (2021) · Zbl 1466.81132 · doi:10.1007/JHEP05(2021)259
[26] B. Bellazzini et al., Positive moments for scattering amplitudes, Phys. Rev. D104 (2021) 036006 [arXiv:2011.00037] [INSPIRE].
[27] Martin, A., Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1, Nuovo Cim. A, 42, 930 (1965) · Zbl 0139.23204 · doi:10.1007/BF02720568
[28] C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].
[29] A.V. Manohar and V. Mateu, Dispersion Relation Bounds for ππ Scattering, Phys. Rev. D77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].
[30] A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP05 (2010) 095 [Erratum ibid.11 (2011) 128] [arXiv:0912.4258] [INSPIRE]. · Zbl 1287.83013
[31] Bellazzini, B., Softness and amplitudes’ positivity for spinning particles, JHEP, 02, 034 (2017) · Zbl 1377.81219 · doi:10.1007/JHEP02(2017)034
[32] Wang, Y-J; Guo, F-K; Zhang, C.; Zhou, S-Y, Generalized positivity bounds on chiral perturbation theory, JHEP, 07, 214 (2020) · doi:10.1007/JHEP07(2020)214
[33] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, UV complete me: Positivity Bounds for Particles with Spin, JHEP, 03, 011 (2018) · Zbl 1388.81262 · doi:10.1007/JHEP03(2018)011
[34] Tolley, AJ; Wang, Z-Y; Zhou, S-Y, New positivity bounds from full crossing symmetry, JHEP, 05, 255 (2021) · doi:10.1007/JHEP05(2021)255
[35] Caron-Huot, S.; Van Duong, V., Extremal Effective Field Theories, JHEP, 05, 280 (2021) · doi:10.1007/JHEP05(2021)280
[36] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[37] Du, Z-Z; Zhang, C.; Zhou, S-Y, Triple crossing positivity bounds for multi-field theories, JHEP, 12, 115 (2021) · Zbl 1521.81158 · doi:10.1007/JHEP12(2021)115
[38] Simmons-Duffin, D., A Semidefinite Program Solver for the Conformal Bootstrap, JHEP, 06, 174 (2015) · doi:10.1007/JHEP06(2015)174
[39] A. Sinha and A. Zahed, Crossing Symmetric Dispersion Relations in Quantum Field Theories, Phys. Rev. Lett.126 (2021) 181601 [arXiv:2012.04877] [INSPIRE].
[40] Chiang, L-Y, Into the EFThedron and UV constraints from IR consistency, JHEP, 03, 063 (2022) · doi:10.1007/JHEP03(2022)063
[41] Z. Bern, D. Kosmopoulos and A. Zhiboedov, Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude, J. Phys. A54 (2021) 344002 [arXiv:2103.12728] [INSPIRE]. · Zbl 1519.81389
[42] Henriksson, J.; McPeak, B.; Russo, F.; Vichi, A., Rigorous bounds on light-by-light scattering, JHEP, 06, 158 (2022) · Zbl 1522.81691 · doi:10.1007/JHEP06(2022)158
[43] Chowdhury, SD, Crossing Symmetric Spinning S-matrix Bootstrap: EFT bounds, SciPost Phys., 13, 051 (2022) · doi:10.21468/SciPostPhys.13.3.051
[44] Caron-Huot, S.; Li, Y-Z; Parra-Martinez, J.; Simmons-Duffin, D., Causality constraints on corrections to Einstein gravity, JHEP, 05, 122 (2023) · Zbl 07701937 · doi:10.1007/JHEP05(2023)122
[45] L.-Y. Chiang et al., (Non)-projective bounds on gravitational EFT, arXiv:2201.07177 [INSPIRE].
[46] S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez and D. Simmons-Duffin, Graviton partial waves and causality in higher dimensions, Phys. Rev. D108 (2023) 026007 [arXiv:2205.01495] [INSPIRE]. · Zbl 07701937
[47] Henriksson, J.; McPeak, B.; Russo, F.; Vichi, A., Bounding violations of the weak gravity conjecture, JHEP, 08, 184 (2022) · Zbl 1522.83268 · doi:10.1007/JHEP08(2022)184
[48] L.-Y. Chiang, Y.-T. Huang, L. Rodina and H.-C. Weng, De-projecting the EFThedron, arXiv:2204.07140 [INSPIRE].
[49] Guerrieri, AL; Penedones, J.; Vieira, P., S-matrix bootstrap for effective field theories: massless pions, JHEP, 06, 088 (2021) · doi:10.1007/JHEP06(2021)088
[50] A. Guerrieri, J. Penedones and P. Vieira, Where Is String Theory in the Space of Scattering Amplitudes?, Phys. Rev. Lett.127 (2021) 081601 [arXiv:2102.02847] [INSPIRE]. · Zbl 07716770
[51] Elias Miro, J.; Guerrieri, A.; Gumus, MA, Bridging positivity and S-matrix bootstrap bounds, JHEP, 05, 001 (2023) · Zbl 07701816 · doi:10.1007/JHEP05(2023)001
[52] K. Häring et al., Bounds on photon scattering, arXiv:2211.05795 [INSPIRE].
[53] M. Kruczenski, J. Penedones and B.C. van Rees, Snowmass White Paper: S-matrix Bootstrap, arXiv:2203.02421 [INSPIRE].
[54] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless Spin-2 Pole, Phys. Rev. D102 (2020) 125023 [arXiv:2007.12667] [INSPIRE].
[55] Tokuda, J.; Aoki, K.; Hirano, S., Gravitational positivity bounds, JHEP, 11, 054 (2020) · Zbl 1456.83031 · doi:10.1007/JHEP11(2020)054
[56] Caron-Huot, S.; Mazac, D.; Rastelli, L.; Simmons-Duffin, D., Sharp boundaries for the swampland, JHEP, 07, 110 (2021) · Zbl 1468.83031 · doi:10.1007/JHEP07(2021)110
[57] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, Massive Galileon Positivity Bounds, JHEP, 09, 072 (2017) · Zbl 1382.85005 · doi:10.1007/JHEP09(2017)072
[58] de Rham, C.; Melville, S.; Tolley, AJ; Zhou, S-Y, Positivity Bounds for Massive Spin-1 and Spin-2 Fields, JHEP, 03, 182 (2019) · Zbl 1414.81156 · doi:10.1007/JHEP03(2019)182
[59] X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality Constraints on Massive Gravity, Phys. Rev. D96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].
[60] Chen, CY-R; de Rham, C.; Margalit, A.; Tolley, AJ, A cautionary case of casual causality, JHEP, 03, 025 (2022) · Zbl 1522.81200
[61] C. de Rham and A.J. Tolley, Causality in curved spacetimes: The speed of light and gravity, Phys. Rev. D102 (2020) 084048 [arXiv:2007.01847] [INSPIRE].
[62] C. de Rham, A.J. Tolley and J. Zhang, Causality Constraints on Gravitational Effective Field Theories, Phys. Rev. Lett.128 (2022) 131102 [arXiv:2112.05054] [INSPIRE].
[63] Goon, G.; Hinterbichler, K., Superluminality, black holes and EFT, JHEP, 02, 134 (2017) · Zbl 1377.83044 · doi:10.1007/JHEP02(2017)134
[64] Hinterbichler, K.; Joyce, A.; Rosen, RA, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP, 03, 051 (2018) · Zbl 1388.83590 · doi:10.1007/JHEP03(2018)051
[65] M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, Eikonal phase matrix, deflection angle and time delay in effective field theories of gravity, Phys. Rev. D102 (2020) 046014 [arXiv:2006.02375] [INSPIRE].
[66] Bellazzini, B.; Isabella, G.; Lewandowski, M.; Sgarlata, F., Gravitational causality and the self-stress of photons, JHEP, 05, 154 (2022) · Zbl 1522.83265 · doi:10.1007/JHEP05(2022)154
[67] B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].
[68] Cheung, C.; Remmen, GN, Positive Signs in Massive Gravity, JHEP, 04, 002 (2016) · Zbl 1388.83576
[69] J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].
[70] B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].
[71] J. Bonifacio and K. Hinterbichler, Bounds on Amplitudes in Effective Theories with Massive Spinning Particles, Phys. Rev. D98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].
[72] S. Melville and J. Noller, Positivity in the Sky: Constraining dark energy and modified gravity from the UV, Phys. Rev. D101 (2020) 021502 [Erratum ibid.102 (2020) 049902] [arXiv:1904.05874] [INSPIRE].
[73] C. de Rham and A.J. Tolley, Speed of gravity, Phys. Rev. D101 (2020) 063518 [arXiv:1909.00881] [INSPIRE].
[74] Alberte, L., Positivity Constraints on Interacting Spin-2 Fields, JHEP, 03, 097 (2020) · Zbl 1435.81113 · doi:10.1007/JHEP03(2020)097
[75] W.-M. Chen, Y.-T. Huang, T. Noumi and C. Wen, Unitarity bounds on charged/neutral state mass ratios, Phys. Rev. D100 (2019) 025016 [arXiv:1901.11480] [INSPIRE].
[76] Huang, Y-T; Liu, J-Y; Rodina, L.; Wang, Y., Carving out the Space of Open-String S-matrix, JHEP, 04, 195 (2021) · Zbl 1462.83074 · doi:10.1007/JHEP04(2021)195
[77] Wang, Z-Y; Zhang, C.; Zhou, S-Y, Generalized elastic positivity bounds on interacting massive spin-2 theories, JHEP, 04, 217 (2021) · doi:10.1007/JHEP04(2021)217
[78] Herrero-Valea, M.; Timiryasov, I.; Tokareva, A., To Positivity and Beyond, where Higgs-Dilaton Inflation has never gone before, JCAP, 11, 042 (2019) · Zbl 1543.83207 · doi:10.1088/1475-7516/2019/11/042
[79] M. Herrero-Valea, R. Santos-Garcia and A. Tokareva, Massless positivity in graviton exchange, Phys. Rev. D104 (2021) 085022 [arXiv:2011.11652] [INSPIRE].
[80] de Rham, C.; Melville, S.; Noller, J., Positivity bounds on dark energy: when matter matters, JCAP, 08, 018 (2021) · doi:10.1088/1475-7516/2021/08/018
[81] Arkani-Hamed, N.; Huang, Y-T; Liu, J-Y; Remmen, GN, Causality, unitarity, and the weak gravity conjecture, JHEP, 03, 083 (2022) · Zbl 1522.83116 · doi:10.1007/JHEP03(2022)083
[82] Bellazzini, B.; Isabella, G.; Riva, MM, Classical vs. quantum eikonal scattering and its causal structure, JHEP, 04, 023 (2023) · Zbl 07693911 · doi:10.1007/JHEP04(2023)023
[83] Will, CM, The Confrontation between General Relativity and Experiment, Living Rev. Rel., 17, 4 (2014) · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[84] E. Berti et al., Testing General Relativity with Present and Future Astrophysical Observations, Class. Quant. Grav.32 (2015) 243001 [arXiv:1501.07274] [INSPIRE].
[85] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
[86] Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. I. The shadow of the Supermassive Black Hole, Astrophys. J. Lett.875 (2019) L1 [arXiv:1906.11238] [INSPIRE].
[87] Brans, C.; Dicke, RH, Mach’s principle and a relativistic theory of gravitation, Phys. Rev., 124, 925 (1961) · Zbl 0103.21402 · doi:10.1103/PhysRev.124.925
[88] Horndeski, GW, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363 (1974) · doi:10.1007/BF01807638
[89] C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].
[90] Langlois, D.; Noui, K., Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP, 02, 034 (2016) · doi:10.1088/1475-7516/2016/02/034
[91] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory Vol. 1: 25th Anniversary Edition, Cambridge University Press (2012) [doi:10.1017/CBO9781139248563] [INSPIRE]. · Zbl 1245.53003
[92] Kanti, P., Dilatonic black holes in higher curvature string gravity, Phys. Rev. D, 54, 5049 (1996) · doi:10.1103/PhysRevD.54.5049
[93] T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett.112 (2014) 251102 [arXiv:1312.3622] [INSPIRE].
[94] T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity: An explicit example, Phys. Rev. D90 (2014) 124063 [arXiv:1408.1698] [INSPIRE].
[95] K. Yagi, L.C. Stein, N. Yunes and T. Tanaka, Post-Newtonian, Quasi-Circular Binary Inspirals in Quadratic Modified Gravity, Phys. Rev. D85 (2012) 064022 [Erratum ibid.93 (2016) 029902] [arXiv:1110.5950] [INSPIRE].
[96] H.O. Silva et al., Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett.120 (2018) 131104 [arXiv:1711.02080] [INSPIRE].
[97] D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories, Phys. Rev. Lett.120 (2018) 131103 [arXiv:1711.01187] [INSPIRE]. · Zbl 1536.83099
[98] K. Yagi, A new constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass X-ray binary, Phys. Rev. D86 (2012) 081504 [arXiv:1204.4524] [INSPIRE].
[99] H. Witek, L. Gualtieri, P. Pani and T.P. Sotiriou, Black holes and binary mergers in scalar Gauss-Bonnet gravity: scalar field dynamics, Phys. Rev. D99 (2019) 064035 [arXiv:1810.05177] [INSPIRE].
[100] Z. Carson, B.C. Seymour and K. Yagi, Future prospects for probing scalar-tensor theories with gravitational waves from mixed binaries, Class. Quant. Grav.37 (2020) 065008 [arXiv:1907.03897] [INSPIRE].
[101] H.-T. Wang et al., Tight constraints on Einstein-dilation-Gauss-Bonnet gravity from GW190412 and GW190814, Phys. Rev. D104 (2021) 024015 [arXiv:2104.07590] [INSPIRE].
[102] S.E. Perkins, R. Nair, H.O. Silva and N. Yunes, Improved gravitational-wave constraints on higher-order curvature theories of gravity, Phys. Rev. D104 (2021) 024060 [arXiv:2104.11189] [INSPIRE].
[103] P. Pani, E. Berti, V. Cardoso and J. Read, Compact stars in alternative theories of gravity. Einstein-Dilaton-Gauss-Bonnet gravity, Phys. Rev. D84 (2011) 104035 [arXiv:1109.0928] [INSPIRE].
[104] A. Saffer and K. Yagi, Tidal deformabilities of neutron stars in scalar-Gauss-Bonnet gravity and their applications to multimessenger tests of gravity, Phys. Rev. D104 (2021) 124052 [arXiv:2110.02997] [INSPIRE].
[105] Antoniou, G.; Papageorgiou, A.; Kanti, P., Probing Modified Gravity Theories with Scalar Fields Using Black-Hole Images, Universe, 9, 147 (2023) · doi:10.3390/universe9030147
[106] Z. Lyu, N. Jiang and K. Yagi, Constraints on Einstein-dilation-Gauss-Bonnet gravity from black hole-neutron star gravitational wave events, Phys. Rev. D105 (2022) 064001 [Erratum ibid.106 (2022) 069901] [arXiv:2201.02543] [INSPIRE].
[107] L.K. Wong, C.A.R. Herdeiro and E. Radu, Constraining spontaneous black hole scalarization in scalar-tensor-Gauss-Bonnet theories with current gravitational-wave data, Phys. Rev. D106 (2022) 024008 [arXiv:2204.09038] [INSPIRE].
[108] J.D. Bekenstein, Black hole hair: 25 - years after, in the proceedings of the 2nd International Sakharov Conference on Physics, (1996), p. 216-219 [gr-qc/9605059] [INSPIRE].
[109] Herdeiro, CAR; Radu, E., Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D, 24, 1542014 (2015) · Zbl 1339.83008 · doi:10.1142/S0218271815420146
[110] T.P. Sotiriou and E. Barausse, Post-Newtonian expansion for Gauss-Bonnet gravity, Phys. Rev. D75 (2007) 084007 [gr-qc/0612065] [INSPIRE].
[111] Damour, T.; Esposito-Farese, G., Nonperturbative strong field effects in tensor - scalar theories of gravitation, Phys. Rev. Lett., 70, 2220 (1993) · doi:10.1103/PhysRevLett.70.2220
[112] D.D. Doneva et al., Scalarization, arXiv:2211.01766 [INSPIRE]. · Zbl 1536.83099
[113] H.O. Silva, H. Witek, M. Elley and N. Yunes, Dynamical Descalarization in Binary Black Hole Mergers, Phys. Rev. Lett.127 (2021) 031101 [arXiv:2012.10436] [INSPIRE].
[114] Herrero-Valea, M., The shape of scalar Gauss-Bonnet gravity, JHEP, 03, 075 (2022) · Zbl 1522.83262 · doi:10.1007/JHEP03(2022)075
[115] Serra, F.; Serra, J.; Trincherini, E.; Trombetta, LG, Causality constraints on black holes beyond GR, JHEP, 08, 157 (2022) · Zbl 1522.83238 · doi:10.1007/JHEP08(2022)157
[116] M.P. Hertzberg, J.A. Litterer and N. Shah, Causal modifications of gravity and their observational bounds, Phys. Rev. D107 (2023) 024037 [arXiv:2209.07525] [INSPIRE].
[117] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].
[118] A. Martin, Unitarity and high-energy behavior of scattering amplitudes, Phys. Rev.129 (1963) 1432 [INSPIRE]. · Zbl 0114.44402
[119] D.-Y. Hong, Z.-H. Wang, H. Xu and S.-Y. Zhou, Causality bounds on scalar-tensor EFTs II, in preparation.
[120] Clifton, T.; Ferreira, PG; Padilla, A.; Skordis, C., Modified Gravity and Cosmology, Phys. Rept., 513, 1 (2012) · doi:10.1016/j.physrep.2012.01.001
[121] Solomon, AR; Trodden, M., Higher-derivative operators and effective field theory for general scalar-tensor theories, JCAP, 02, 031 (2018) · Zbl 1527.83092 · doi:10.1088/1475-7516/2018/02/031
[122] Ruhdorfer, M.; Serra, J.; Weiler, A., Effective Field Theory of Gravity to All Orders, JHEP, 05, 083 (2020) · Zbl 1437.83044 · doi:10.1007/JHEP05(2020)083
[123] S. Mizera, Bounds on Crossing Symmetry, Phys. Rev. D103 (2021) 081701 [arXiv:2101.08266] [INSPIRE].
[124] M. Herrero-Valea, A.S. Koshelev and A. Tokareva, UV graviton scattering and positivity bounds from IR dispersion relations, Phys. Rev. D106 (2022) 105002 [arXiv:2205.13332] [INSPIRE].
[125] Gavela, BM; Jenkins, EE; Manohar, AV; Merlo, L., Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J. C, 76, 485 (2016) · doi:10.1140/epjc/s10052-016-4332-1
[126] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D7 (1973) 2333 [INSPIRE]. · Zbl 1369.83037
[127] V.I. Danchev, D.D. Doneva and S.S. Yazadjiev, Constraining scalarization in scalar-Gauss-Bonnet gravity through binary pulsars, Phys. Rev. D106 (2022) 124001 [arXiv:2112.03869] [INSPIRE].
[128] O. Tange, GNU Parallel 20150322 (’Hellwig’), http://www.gnu.org/s/parallel [doi:10.5281/ZENODO.16303].
[129] O. Tange, GNU Parallel - The Command-Line Power Tool, ;login:36 (2011) 42.
[130] P. Benincasa and F. Cachazo, Consistency Conditions on the S-Matrix of Massless Particles, arXiv:0705.4305 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.