×

Reflection groups and cones of sums of squares. (English) Zbl 1521.14102

Studying the difference between the Cone of Sums of Squares and the Cone of Nonnegative Real Polynomials is a crucial problem in real algebraic geometry. In this article, the authors focus extensively on the structure of the Sums of Squares Cone, which remains invariant under reflection groups. In particular, they effectively analyze the structure of SoS cones invariant under \(A_n\), \(B_n\), and \(D_n\), utilizing Specht’s polynomial representations of reflection group as introduced by H. Morita and H. F. Yamada [Hokkaido Math. J. 27, No. 3, 505–515 (1998; Zbl 0919.20027)] in their work on Higher Specht Polynomials for the complex reflection group.
Research on when non-negative polynomials can be expressed as sums of squares has a long history, dating back to Hilbert’s work on forms with given degrees and the number of variables. Notably, studies have been conducted on symmetric forms, such as Choi, Lam, and Resnick’s results on symmetric sextics and Harris’s investigations into symmetric ternary octics, where it has been established that non-negative polynomials can indeed be represented as sums of squares.
Extensive research in the invariant theory of finite reflection groups has allowed the generalization of the theories and results from symmetric polynomials. In particular, this paper, focusing on reflection groups that are invariant under \(A_n\), \(B_n\), and \(D_n\), achieves a concrete characterization of the cone of invariant sums of squares in Theorem 3.11.
Using this characterization, in Theorem 4.1, the authors provide an explicit description of the dual cone of even symmetric ternary octic sums of squares, essentially reaffirming Harris’s results concerning symmetric ternary octics. Furthermore, in Theorem 4.18, they prove that any nonnegative ternary octics invariant under \(D_3\) can be expressed as a sum of squares. In Theorem 4.22, the authors shed light on the structure of the dual cone of sums of squares of quaternary quartics invariant under \(D_4\), and in Theorem 4.26, they establish whether all nonnegative polynomials for a given \((n,2d)\) are sums of squares invariant under \(D_n\). Finally, the article concludes by highlighting some connections to non-negativity testing of forms using semidefinite programming in the last subsection.

MSC:

14P99 Real algebraic and real-analytic geometry
05E05 Symmetric functions and generalizations
90C22 Semidefinite programming

Citations:

Zbl 0919.20027

References:

[1] Acevedo, J.; Velasco, M., Test sets for non-negativity of polynomials invariant under a finite reflection group, J. Pure Appl. Algebra, 220, 8, 2936-2947 (2016) · Zbl 1367.20036
[2] Ariki, S.; Terasoma, T.; Yamada, H.-F., Higher Specht polynomials, Hiroshima Math. J., 27, 1, 177-188 (1997) · Zbl 0886.20009
[3] Bergeron, F., Algebraic Combinatorics and Coinvariant Spaces (2009), CRC Press · Zbl 1185.05002
[4] Blekherman, G., There are significantly more nonnegative polynomials than sums of squares, Isr. J. Math., 153, 1, 355-380 (2006) · Zbl 1139.14044
[5] Blekherman, G., Non-negative polynomials and sums of squares, J. Am. Math. Soc., 25, 3, 617-635 (2012) · Zbl 1258.14067
[6] Blekherman, G.; Riener, C., Symmetric non-negative forms and sums of squares, Discrete Comput. Geom., 65, 3, 764-799 (2021) · Zbl 1472.14063
[7] Blekherman, G.; Parrilo, P. A.; Thomas, R. R., Semidefinite Optimization and Convex Algebraic Geometry (2012), SIAM
[8] Blum, L.; Cucker, F.; Shub, M.; Smale, S., Complexity and Real Computation (1998), Springer Science & Business Media
[9] Caselli, F., Projective reflection groups, Isr. J. Math., 185, 1, 155 (2011) · Zbl 1273.20034
[10] Chevalley, C., Invariants of finite groups generated by reflections, Am. J. Math., 77, 4, 778-782 (1995) · Zbl 0065.26103
[11] Choi, M.-D.; Lam, T.-Y.; Reznick, B., Even symmetric sextics, Math. Z., 195, 4, 559-580 (1987) · Zbl 0654.10024
[12] Choi, M. D.; Lam, T. Y., An old question of Hilbert, Queen’s Pap. Pure Appl. Math., 46, 385-405, 4 (1977) · Zbl 0382.12010
[13] Chua, L.; Plaumann, D.; Sinn, R.; Vinzant, C., Gram spectrahedra, (Ordered Algebraic Structures and Related Topics, vol. 697 (2016)), 81-105 · Zbl 1390.14176
[14] Cimprič, J.; Kuhlmann, S.; Scheiderer, C., Sums of squares and moment problems in equivariant situations, Trans. Am. Math. Soc., 361, 2, 735-765 (2009) · Zbl 1170.14041
[15] de Klerk, E.; Pasechnik, D. V., Products of positive forms, linear matrix inequalities, and Hilbert 17th problem for ternary forms, Eur. J. Oper. Res., 157, 1, 39-45 (2004) · Zbl 1106.90058
[16] Debus, S., Non-negativity versus sums of squares in equivariant situations (July 2019), Universität Wien, Master’s thesis
[17] Dostert, M.; Guzmán, C.; de Oliveira Filho, F. M.; Vallentin, F., New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry, Discrete Comput. Geom., 58, 449-481 (2017) · Zbl 1376.52036
[18] Friedl, T.; Riener, C.; Sanyal, R., Reflection groups, reflection arrangements, and invariant real varieties, Proc. Am. Math. Soc., 146, 3, 1031-1045 (2018) · Zbl 1423.14329
[19] Fulton, W., Young Tableaux: With Applications to Representation Theory and Geometry, vol. 35 (1997), Cambridge University Press · Zbl 0878.14034
[20] Gatermann, K.; Parrilo, P. A., Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192, 1-3, 95-128 (2004) · Zbl 1108.13021
[21] Goel, C.; Kuhlmann, S.; Reznick, B., The analogue of Hilbert’s 1888 theorem for even symmetric forms, J. Pure Appl. Algebra, 221, 6, 1438-1448 (2017) · Zbl 1367.11046
[22] Harris, W. R., Real even symmetric ternary forms, J. Algebra, 222, 1, 204-245 (1999) · Zbl 0970.11013
[23] Heaton, A.; Hoşten, S.; Shankar, I., Symmetry adapted Gram spectrahedra, SIAM J. Appl. Algebra Geom., 5, 1, 140-164 (2020) · Zbl 1472.90083
[24] Helgason, S., Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, vol. 83 (2022), American Mathematical Society
[25] Hilbert, D., Über die darstellung definiter formen als summe von formenquadraten, Math. Ann., 32, 3, 342-350 (1888) · JFM 20.0198.02
[26] Humphreys, J. E., Reflection Groups and Coxeter Groups, vol. 29 (1990), Cambridge University Press · Zbl 0725.20028
[27] Lehrer, G. I.; Taylor, D. E., Unitary Reflection Groups, vol. 20 (2009), Cambridge University Press · Zbl 1189.20001
[28] Morita, H.; Yamada, H.-F., Higher Specht polynomials for the complex reflection group g (r, p, n), Hokkaido Math. J., 27, 3, 505-515 (1998) · Zbl 0919.20027
[29] Moustrou, P.; Riener, C.; Verdure, H., Symmetric ideals, Specht polynomials and solutions to symmetric systems of equations, J. Symb. Comput., 107, 106-121 (2021) · Zbl 1475.13053
[30] Murty, K. G.; Kabadi, S. N., Some NP-complete problems in quadratic and nonlinear programming (1985), Technical report
[31] Pólya, G., Über positive Darstellungen von Polynomen, Vierteljschr. Naturforsch. Ges. Zürich, 73, 141-145 (1928) · JFM 54.0138.01
[32] Powers, V.; Wörmann, T., An algorithm for sums of squares of real polynomials, J. Pure Appl. Algebra, 127, 1, 99-104 (1998) · Zbl 0936.11023
[33] Ramana, M. V., An exact duality theory for semidefinite programming and its complexity implications, Math. Program., 77, 1, 129-162 (1997) · Zbl 0890.90144
[34] Raymond, A.; Saunderson, J.; Singh, M.; Thomas, R. R., Symmetric sums of squares over k-subset hypercubes, Math. Program., 167, 2, 315-354 (2018) · Zbl 1383.05306
[35] Riener, C., Symmetries in semidefinite and polynomial optimization (2011), Johann Wolfgang Goethe University Frankfurt, PhD thesis
[36] Riener, C., On the degree and half-degree principle for symmetric polynomials, J. Pure Appl. Algebra, 216, 4, 850-856 (2012) · Zbl 1242.05272
[37] Riener, C., Symmetric semi-algebraic sets and non-negativity of symmetric polynomials, J. Pure Appl. Algebra, 220, 8, 2809-2815 (2016) · Zbl 1337.14046
[38] Riener, C.; Theobald, T.; Andrén, L. J.; Lasserre, J. B., Exploiting symmetries in SDP-relaxations for polynomial optimization, Math. Oper. Res., 38, 1, 122-141 (2013) · Zbl 1291.90167
[39] Scheiderer, C., Positivity and sums of squares: a guide to recent results, (Emerging Applications of Algebraic Geometry (2009), Springer), 271-324 · Zbl 1156.14328
[40] Scheiderer, C., Spectrahedral shadows, SIAM J. Appl. Algebra Geom., 2, 1, 26-44 (2018) · Zbl 1391.90462
[41] Specht, W., Die irreduziblen Darstellungen der Symmetrischen Gruppe, Math. Z., 39, 1, 696-711 (1935) · JFM 61.0109.02
[42] Stanley, R. P., Invariants of finite groups and their applications to combinatorics, Bull. Am. Math. Soc., 1, 3, 475-511 (1979) · Zbl 0497.20002
[43] Steinberg, R., Invariants of finite reflection groups, Can. J. Math., 12, 616-618 (1960) · Zbl 0099.36802
[44] Timofte, V., On the positivity of symmetric polynomial functions. Part I: General results, J. Math. Anal. Appl., 284, 1, 174-190 (2003) · Zbl 1031.05130
[45] Vallentin, F., Symmetry in semidefinite programs, Linear Algebra Appl., 430, 1, 360-369 (2009) · Zbl 1165.90017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.