×

Symmetry adapted Gram spectrahedra. (English) Zbl 1472.90083

Summary: This paper explores the geometric structure of the spectrahedral cone, called the symmetry adapted positive semidefinite (PSD) cone, and the symmetry adapted Gram spectrahedron of a symmetric polynomial. In particular, we determine the dimension of the symmetry adapted PSD cone, describe its extremal rays, and discuss the structure of its matrix representations. We also consider the symmetry adapted Gram spectrahedra for specific families of symmetric polynomials including binary symmetric polynomials, quadratics, and ternary quartics and sextics which give us further insight into these symmetric sums of squares polynomials.

MSC:

90C22 Semidefinite programming
05E05 Symmetric functions and generalizations
14Q30 Computational real algebraic geometry

Software:

SageMath; Macaulay2

References:

[1] D. Amelunxen and P. Bürgisser, Intrinsic volumes of symmetric cones and applications in convex programming, Math. Program., 149 (2015), pp. 105-130. · Zbl 1311.90092
[2] C. Bachoc, D. C. Gijswijt, A. Schrijver, and F. Vallentin, Invariant semidefinite programs, in Handbook on Semidefinite, Conic and Polynomial Optimization, Internat. Ser. Oper. Res. Management Sci. 166, Springer, New York, 2012, pp. 219-269. · Zbl 1334.90097
[3] M. Beck and S. Robins, Computing the continuous discretely, Undergrad. Texts Math., 2nd ed., Springer, New York, 2015. · Zbl 1339.52002
[4] G. Blekherman, D. Plaumann, R. Sinn, and C. Vinzant, Low-rank sum-of-squares representations on varieties of minimal degree, Int. Math. Res. Not. IMRN, 2019 (2019), pp. 33-54. · Zbl 1439.14167
[5] G. Blekherman and C. Riener, Symmetric non-negative forms and sums of squares, Discrete Comput. Geom., 65 (2021), pp. 764-799. · Zbl 1472.14063
[6] J. W. S. Cassels, W. J. Ellison, and A. Pfister, On sums of squares and on elliptic curves over function fields, J. Number Theory, 3 (1971), pp. 125-149. · Zbl 0217.04302
[7] M. D. Choi and T. Y. Lam, An old question of Hilbert, in Conference on Quadratic Forms-1976 Proc. Conf., Queen’s University, Kingston, Ontario, 1976, Queen’s Papers in Pure and Appl. Math. 46, 1977, pp. 385-405. · Zbl 0382.12010
[8] M. D. Choi, T. Y. Lam, and B. Reznick, Even symmetric sextics, Math. Z., 195 (1987), pp. 559-580. · Zbl 0654.10024
[9] M.-D. Choi, T. Y. Lam, and B. Reznick, Sums of squares of real polynomials, in \(K\)-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara, CA, 1992, Proc. Sympos. Pure Math. 58, American Mathematical Society, Providence, RI, 1995, pp. 103-126. · Zbl 0821.11028
[10] L. Chua, D. Plaumann, R. Sinn, and C. Vinzant, Gram spectrahedra, in Ordered Algebraic Structures and Related Topics, Contemp. Math. 697, American Mathematical Society, Providence, RI, 2017, pp. 81-105. · Zbl 1390.14176
[11] A. B. Coble, Algebraic geometry and theta functions, Amer. Math. Soc. Colloq. Publ. 10, American Mathematical Society, Providence, RI, 1982. · JFM 55.0808.02
[12] F. A. Cotton, Chemical Applications of Group Theory, Wiley, New York, 1990.
[13] A. Cuttler, C. Greene, and M. Skandera, Inequalities for symmetric means, European J. Combin., 32 (2011), pp. 745-761. · Zbl 1229.05267
[14] A. Fässler and E. Stiefel, Group theoretical methods and their applications, Birkhäuser Boston, Boston, MA, 1992. · Zbl 0769.20002
[15] K. Gatermann and P. A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra, 192 (2004), pp. 95-128. · Zbl 1108.13021
[16] C. G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge University Press, Cambridge, 1998. · Zbl 0997.14500
[17] C. Goel, S. Kuhlmann, and B. Reznick, On the Choi-Lam analogue of Hilbert’s \(1888\) theorem for symmetric forms, Linear Algebra Appl., 496 (2016), pp. 114-120. · Zbl 1382.11034
[18] C. Goel, S. Kuhlmann, and B. Reznick, The analogue of Hilbert’s \(1888\) theorem for even symmetric forms, J. Pure Appl. Algebra, 221 (2017), pp. 1438-1448. · Zbl 1367.11046
[19] D. R. Grayson and M. E. Stillman, Macaulay2, http://www.math.uiuc.edu/Macaulay2/.
[20] A. Heaton and I. Shankar, An SOS counterexample to an inequality of symmetric functions, J. Pure Appl. Algebra, to appear. · Zbl 1462.05349
[21] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Classic Texts Phys. Sci., Clarendon Press, New York, 2015. · Zbl 1332.05002
[22] L. Menini, C. Possieri, and A. Tornambè, A linear algebra method to decompose forms whose length is lower than the number of variables into weighted sum of squares, Internat. J. Control, 92 (2019), pp. 2647-2666. · Zbl 1453.93043
[23] P. A. Parrilo, Polynomial optimization, sums of squares, and applications, in Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Ser. Optim. 13, SIAM, Philadelphia, 2013, pp. 47-157. · Zbl 1360.90194
[24] D. Plaumann, B. Sturmfels, and C. Vinzant, Quartic curves and their bitangents, J. Symbolic Comput., 46 (2011), pp. 712-733. · Zbl 1214.14049
[25] V. Powers, B. Reznick, C. Scheiderer, and F. Sottile, A new approach to Hilbert’s theorem on ternary quartics, C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 617-620. · Zbl 1061.11016
[26] M. Ramana and A. J. Goldman, Some geometric results in semidefinite programming, J. Global Optim., 7 (1995), pp. 33-50. · Zbl 0839.90093
[27] A. Raymond, J. Saunderson, M. Singh, and R. R. Thomas, Symmetric sums of squares over \(k\)-subset hypercubes, Math. Program., 167 (2018), pp. 315-354. · Zbl 1383.05306
[28] A. Raymond, M. Singh, and R. R. Thomas, Symmetry in Turán sums of squares polynomials from flag algebras, Algebr. Comb., 1 (2018), pp. 249-274. · Zbl 1388.05186
[29] R. M. Robinson, Some definite polynomials which are not sums of squares of real polynomials, in Selected Questions of Algebra and Logic (collection dedicated to the memory of A. I. Mal’cev), Novosibirsk, Russia, Nauka, 1973, pp. 264-282 (in Russian). · Zbl 0277.10019
[30] B. E. Sagan, The Symmetric Group, Grad. Texts Math. 203, 2nd ed., Springer, New York, 2001. · Zbl 0964.05070
[31] C. Scheiderer, Sum of squares length of real forms, Math. Z., 286 (2017), pp. 559-570. · Zbl 1420.11070
[32] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics 42, Springer, New York, 1977. · Zbl 0355.20006
[33] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Stud. Adv. Math. 62, Cambridge University Press, Cambridge, 1999. · Zbl 0928.05001
[34] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.2), https://www.sagemath.org.
[35] P. Yiu, The length of \(x^4_1+x^4_2+x^4_3+x^4_4\) as a sum of squares, J. Pure Appl. Algebra, 156 (2001), pp. 367-373. · Zbl 0997.11034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.