×

Semi-abelian analogues of Schanuel conjecture and applications. (English) Zbl 1495.11085

In this paper, the authors study semi-abelian analogues of Schanuel’s conjecture. The first author [J. Number Theory 97, No. 2, 204–221 (2002; Zbl 1067.11041)] showed that Schanuel conjecture is equivalent to the Generalized Period conjecture applied to 1-motives without abelian part. Extending her methods, the second, the third and the fourth authors [Ramanujan J. 52, No. 2, 381–392 (2020; Zbl 1496.11099)] have introduced in 2020 the abelian analogue of Schanuel’s conjecture as the generalized period conjecture applied to 1-motives without toric part. In the first result of the paper, the authors define the semi-abelian analogue of Schanuel’s conjecture as the Generalized Period conjecture applied to 1-motives. Answering a question of M. Waldschmidt, C. Cheng et al. [J. Number Theory 129, No. 6, 1464–1467 (2009; Zbl 1242.11052)] proved in 2009 that Schanuel’s conjecture implies the algebraic independence of the values of the iterated exponential and the values of the iterated logarithm. In the setting of abelian varieties, P. Philippon, B. Saha and E. Saha have showed that the weak abelian Schanuel’s conjecture implies the algebraic independence of the values of the iterated abelian exponential and the values of an iterated generalized abelian logarithm. The main result of the paper is that a relative semi-abelian conjecture implies the algebraic independence of the values of the iterated semi-abelian exponential and the values of an iterated generalized semi-abelian logarithm.

MSC:

11J81 Transcendence (general theory)
11J89 Transcendence theory of elliptic and abelian functions
14K20 Analytic theory of abelian varieties; abelian integrals and differentials
14K25 Theta functions and abelian varieties

References:

[1] André, Y., Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, vol. 17 (2004), Société Mathématique de France: Société Mathématique de France Paris · Zbl 1060.14001
[2] André, Y., Groupes de Galois motiviques et périodes, Astérisque, 390, 1-26 (2017), Séminaire Bourbaki 68ème année, 2015-2016, exposé \(\operatorname{n}^\circ 1104\) · Zbl 1439.14075
[3] André, Y., A note on 1-motives, Int. Math. Res. Not., 2021, 3, 2074-2080 (2021) · Zbl 1467.14012
[4] Bertolin, C., The Mumford-Tate group of 1-motives, Ann. Inst. Fourier (Grenoble), 52, 4, 1041-1059 (2002) · Zbl 1001.14017
[5] Bertolin, C., Périodes de 1-motifs et transcendence, J. Number Theory, 97, 2, 204-221 (2002) · Zbl 1067.11041
[6] Bertolin, C., Le radical unipotent du groupe de Galois motivique d’un 1-motif, Math. Ann., 327, 3, 585-607 (2003) · Zbl 1073.14004
[7] Bertolin, C., Extensions and biextensions of locally constant group schemes, tori and abelian schemes, Math. Z., 261, 4, 845-868 (2009) · Zbl 1167.14002
[8] Bertolin, C.; Mazza, C., Biextensions of 1-motives in Voevodsky’s category of motives, Int. Math. Res. Not., 2009, 19, 3747-3757 (2009) · Zbl 1179.14004
[9] Bertolin, C., Multilinear morphisms between 1-motives, J. Reine Angew. Math., 637, 141-174 (2009) · Zbl 1186.14006
[10] Bertolin, C., Homological interpretation of extensions and biextensions of 1-motives, J. Number Theory, 132, 10, 2103-2131 (2012) · Zbl 1253.14004
[11] Bertolin, C., Biextensions of Picard stacks and their homological interpretation, Adv. Math., 233, 1, 1-39 (2013) · Zbl 1258.18010
[12] Bertolin, C.; Tatar, A., Extensions of Picard 2-stacks and the cohomology groups \(\operatorname{Ext}^i\) of length 3 complexes, Ann. Mat. Pura Appl., 193, 1, 291-315 (2014) · Zbl 1294.18010
[13] Bertolin, C.; Tatar, A., Higher dimensional study of extensions via torsors, Ann. Mat. Pura Appl., 197, 2, 433-468 (2018) · Zbl 1408.18032
[14] Bertolin, C.; Brochard, S., Morphisms of 1-motives defined by line bundles, Int. Math. Res. Not., 2019, 5, 1568-1600 (2019) · Zbl 1454.14011
[15] Bertolin, C., Third kind elliptic integrals and 1-motives, J. Pure Appl. Algebra, 224, 10, Article 106396 pp. (2020), With a letter of Y. André and an appendix by M. Waldschmidt · Zbl 1450.11077
[16] Bertolin, C.; Galluzzi, F., A note on divisorial correspondences of extensions of abelian schemes by tori, Commun. Algebra, 48, 7, 3031-3034 (2020) · Zbl 1441.14148
[17] Bertolin, C.; Galluzzi, F., Brauer groups of 1-motives, J. Pure Appl. Algebra, 225, 11, Article 106754 pp. (2021) · Zbl 1475.14042
[18] Bertrand, D., 1-motifs et relations d’orthogonalité dans les groupes de Mordell-Weil, Math. Zapiski, 2 (1996), (in Russian)
[19] Bertrand, D., Relative splitting of one-motives, (Number Theory. Number Theory, Tiruchirapalli, 1996. Number Theory. Number Theory, Tiruchirapalli, 1996, Contemp. Math., vol. 210 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 1043.11054
[20] Bertrand, D., Endomorphismes de groupes algébriques; applications arithmétiques, (Diophantine Approximations and Transcendental Numbers. Diophantine Approximations and Transcendental Numbers, Luminy, 1982. Diophantine Approximations and Transcendental Numbers. Diophantine Approximations and Transcendental Numbers, Luminy, 1982, Progr. Math., vol. 31 (1983), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 1-45 · Zbl 0526.10029
[21] Birkenhake, C.; Lange, H., Complex Abelian Varieties, Grund. Math. Wissen., vol. 302 (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1056.14063
[22] Breen, L., Fonctions thêta et théorème du cube, Lecture Notes in Math., vol. 980 (1983), Springer · Zbl 0558.14029
[23] Cheng, C.; Dietel, B.; Herblot, M.; Huang, J.; Krieger, H.; Marques, D.; Mason, J.; Mereb, M.; Wilson, S. R., Some consequences of Schanuel Conjecture, J. Number Theory, 129, 6, 1464-1467 (2009) · Zbl 1242.11052
[24] Chudnovsky, G., Contributions to the Theory of Transcendental Numbers, Mathematical Surveys and Monographs, vol. 19 (1984), American Mathematical Society: American Mathematical Society Providence, RI, xi+450 pp · Zbl 0594.10024
[25] Deligne, P., Théorie de Hodge III, Publ. Math. Inst. Hautes Études Sci., 44, 5-77 (1974) · Zbl 0237.14003
[26] Deligne, P., Hodge cycles on abelian varieties, (Hodge Cycles, Motives, and Shimura Varieties. Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol. 900 (1982), Springer-Verlag) · Zbl 0537.14006
[27] Deligne, P., Le groupe fondamental de la droite projective moins trois points. Galois group over \(\mathbb{Q} \), Math. Sci. Res. Inst. Publ., 16 (1989) · Zbl 0742.14022
[28] Deligne, P., Catégories tannakiennes, (The Grothendieck Festschrift II, vol. 87 (1990), Birkhäuser) · Zbl 0727.14010
[29] Deligne, P., Letter to the First Author (2001)
[30] Grothendieck, A., On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci., 29, 95-103 (1966) · Zbl 0145.17602
[31] Grothendieck, A., Groupes de Monodromie en Géométrie Algébrique. SGA 7 I, Lecture Notes in Mathematics, vol. 288 (1972), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0237.00013
[32] Lang, S., Elliptic Functions, Graduate Texts in Mathematics, vol. 112 (1987), Springer-Verlag. XI: Springer-Verlag. XI New York, (in English) · Zbl 0615.14018
[33] Lang, S., Algebra, Graduate Texts in Mathematics, vol. 211 (2002), Springer: Springer New York, NY, (in English) · Zbl 0984.00001
[34] Mumford, D., Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5 (1970), Published for the Tata Institute of Fundamental Research: Published for the Tata Institute of Fundamental Research Bombay, Oxford University Press, London · Zbl 0223.14022
[35] M. Nori, Course at Tata Int. Fund. Res. Notes by N. Fakhruddin, Mumbai, 2000.
[36] Philippon, P.; Saha, B.; Saha, E., An abelian analogue of Schanuel’s Conjecture and applications, Ramanujan J., 52, 2, 381-392 (2020) · Zbl 1496.11099
[37] Saavedra Rivano, N., Catégories tannakiennes, Lecture Notes in Mathematics, vol. 265 (1972), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0241.14008
[38] Silverman, J. H., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 106 (2009), Springer: Springer New York, NY, (in English) · Zbl 1194.11005
[39] G. Vallée, Sur la Conjecture de Schanuel abélienne, preprint, October 2018, 13 p.
[40] Waldschmidt, M., Nombres transcendants et groupes algébriques, Astérisque Series Profile 69/70 (1987), Société Mathématique de France: Société Mathématique de France Paris · Zbl 0621.10022
[41] Weil, A., Introduction à l’étude des variétés kähleriennes (1958), Hermann · Zbl 0137.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.