×

Extensions of Picard 2-stacks and the cohomology groups \(\mathrm{Ext}^i\) of length 3 complexes. (English) Zbl 1294.18010

A Picard category \(P\) is a groupoid with the extra compatible structure of a symmetric monoidal category. If \(\mathbf{S}\) is a site, a Picard stack \(\mathcal{P}\) is a stack of groupoids with a functor, \(\otimes :\mathcal{P}\times \mathcal{P}\to \mathcal{P}\), such that, for each object \(U\) of \(\mathbf{S}\), \(\mathcal{P}(U)\) is a Picard category. The now classical theory of P. Deligne [Lect. Notes Math. 305, 481–587 (1973; Zbl 0259.14006)] shows that any 2-term complex of abelian sheaves on \(\mathcal{S}\) gives a pre-stack whose stackification is a Picard stack, and that that construction gives a bi-equivalence of bicategories, \[ 1st:T^{[-1,0]}(\mathbf{S})\to {\mathrm{Pic}}(\mathbf{S}), \] where \(T^{[-1,0]}(\mathbf{S})\) is the bicategory of such complexes whose 1- and 2-morphisms are, essentially, given by ‘fractions’, or ‘butterflies’ in the sense of E. Aldrovandi and B. Noohi [Adv. Math. 221, No. 3, 687–773 (2009; Zbl 1179.18007)].
The second of the present authors extended this result, see [A. E. Tatar, Adv. Math. 226, No. 1, 62–110 (2011; Zbl 1227.14023)], to a tri-equivalence, \(2st\), between length-3 complexes of sheaves on \(\mathbf{S}\), defining a tri-category, \(T^{[-2,0]}(\mathbf{S})\), and a natural tri-category of Picard 2-stacks. A Picard 2-stack, \(\mathbb{P}\), on \(\mathbf{S}\) is a 2-stack of 2-groupoids equipped with a morphism \(\otimes :\mathbb{P}\times \mathbb{P}\to \mathbb{P}\) of 2-stacks such that each \(\mathbb{P}(U)\) is a Picard 2-category, in a fairly obvious sense. These form a tri-category \(2{\mathrm{Picard}}(\mathbf{S})\). (The corresponding category, after dividing out by ‘modifications’ will be denoted \(2{\mathrm{Picard}}^{\flat\flat}(\mathbf{S})\) and the above tri-equivalence induces an (ordinary) equivalence of categories \[ 2st^{\flat\flat}:\mathcal{D}^{[-2,0]}(\mathbf{S})\to 2{\mathrm{Picard}}^{\flat\flat}(\mathbf{S}) \] between the derived category of length-3 complexes of sheaves and that category of Picard 2-stacks. (The functor quasi-inverse to \(2st^{\flat\flat}\) will be denoted \([\quad]^{\flat\flat}\), below.)
In this paper, the authors define and study a natural notion of extension of Picard 2-stacks and morphisms between them of various types, and also some groups, \(\mathcal{E}xt^1(\mathbb{A},\mathbb{B})\), naturally associated to the resulting 3-category, \(\mathcal{E}xt(\mathbb{A},\mathbb{B})\), of such extensions. One of the main theorems is that if \(\mathbb{A}\) and \(\mathbb{B}\) are two Picard 2-stacks, then, for \(i = 1,0,-1,-2\), there is an isomorphism of groups \[ \mathcal{E}xt^i(\mathbb{A},\mathbb{B})\cong \mathrm{Ext}^i([\mathbb{A}]^{\flat\flat},[\mathbb{B}]^{\flat\flat}) \cong \mathcal{D}(\mathbf{S})([\mathbb{A}]^{\flat\flat},[\mathbb{B}]^{\flat\flat}[i]). \] A crucial role is played in the proof by the calculus of fractions that is used to define extensions in the tri-category, \(T^{[-2,0]}(\mathbf{S})\).

MSC:

18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)

References:

[1] Aldrovandi, E.; Noohi, B., Butterflies I: morphisms of 2-group stacks, Adv. Math., 221, 3, 687-773 (2009) · Zbl 1179.18007 · doi:10.1016/j.aim.2008.12.014
[2] Bénabou, J.: Introduction to bicategories. In: MacLane, S. (ed.) Reports of the Midwest Category Seminar. Lecture Notes in Mathematics, vol. 47, pp. 1-77. Springer, Berlin (1967) · Zbl 0165.33001
[3] Bertolin, C., Extensions of Picard stacks and their homological interpretation, J. Algebra, 331, 1, 28-45 (2011) · Zbl 1230.18010 · doi:10.1016/j.jalgebra.2010.12.034
[4] Bertolin, C.: Deligne’s conjecture on extensions of 1-motives. In: arXiv:0906.2179v1 [math.AG] · Zbl 1253.14004
[5] Bourn, D.; Vitale, Em, Extensions of symmetric cat-groups, Homol. Homotopy Appl., 4, 1, 103-162 (2002) · Zbl 1386.18023 · doi:10.4310/HHA.2002.v4.n1.a8
[6] Breen, L., On the classification of 2-gerbes and 2-stacks, Astérisque, 225, 1-160 (1994) · Zbl 0818.18005
[7] Breen, L.: Notes on 1- and 2-gerbes. In: Baez, J.C., May, J.P. (eds.) Towards Higher Categories, volume 152 of the IMA Volumes in Mathematics and its Applications, pp. 193-235. Springer, New York (2010) · Zbl 1207.18013
[8] Deligne, P.: La formule de dualité globale. SGA 4 III, Exposé XVIII (1973)
[9] Giraud, J.: Cohomologie non abélienne. Springer, Berlin (1971) [Die Grundlehren der mathematischen Wissenschaften, Band 179] · Zbl 0226.14011
[10] Gordon, R., Power, A.J., Street, R.: Coherence for tricategories. Mem. Am. Math. Soc. 117(558), vi+81 (1995) · Zbl 0836.18001
[11] Hakim, M.: Topos Annelés et Schémas Relatifs. Springer, Berlin (1972) [Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 64] · Zbl 0246.14004
[12] Tatar, A. E., Length 3 complexes of abelian sheaves and Picard 2-stacks, Adv. Math., 226, 1, 62-110 (2011) · Zbl 1227.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.