×

Symmetry in optimal control: a multiobjective model predictive control approach. (English) Zbl 1457.37111

Junge, Oliver (ed.) et al., Advances in dynamics, optimization and computation. A volume dedicated to Michael Dellnitz on the occasion of his 60th birthday. Cham: Springer. Stud. Syst. Decis. Control 304, 209-237 (2020).
The authors propose a model predictive control (MPC) algorithm which exploits symmetries in nonlinear dynamical systems with multiple objectives aiming at reducing computational effort. They determine and store, in a motion planning library Pareto, optimal motion primitives based on Lie group symmetries. These primitives, which are equivalence classes with respect to the symmetry of the optimal control problems are selected based on the decision maker’s preference and applied to the plant over the control horizon length. The main advantage over classical approaches from motion planning is that only Pareto optimal controls have to be stored which, due to symmetry, are very easy to store. The MPC algorithm is applied for a mobile robot example using trims corresponding to straight motions with constant velocity.
For the entire collection see [Zbl 1445.37003].

MSC:

37N35 Dynamical systems in control
37C79 Symmetries and invariants of dynamical systems
37M21 Computational methods for invariant manifolds of dynamical systems
93C85 Automated systems (robots, etc.) in control theory
93B45 Model predictive control
Full Text: DOI

References:

[1] Alessio, A., Bemporad, A.: A survey on explicit model predictive control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control: Towards New Challenging Applications. volume 384, pp. 345-369. Springer, Heidelberg (2009) · Zbl 1195.93048 · doi:10.1007/978-3-642-01094-1_29
[2] Bemporad, A., Filippi, C.: An algorithm for approximate multiparametric convex programming. Comput. Optim. Appl. 35(1), 87-108 (2006) · Zbl 1121.90100 · doi:10.1007/s10589-006-6447-z
[3] Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3-20 (2002) · Zbl 0999.93018 · doi:10.1016/S0005-1098(01)00174-1
[4] Bemporad, A., de la Peña, D.M.: Multiobjective model predictive control. Automatica 45(12), 2823-2830 (2009) · Zbl 1192.93069 · doi:10.1016/j.automatica.2009.09.032
[5] Betsch, P., Becker, C.: Conservation of generalized momentum maps in mechanical optimal control problems with symmetry. Int. J. Numer. Meth. Eng. 111(2), 144-175 (2017) · Zbl 07867056 · doi:10.1002/nme.5459
[6] Betts, J.T.: Survey of numerical methods for trajectory optimization. AIAA J. Guidance Control Dyn. 21(2), 193-207 (1998) · Zbl 1158.49303 · doi:10.2514/2.4231
[7] Bloch, A.M.: Nonholonomic Mechanics and Control. Springer (2003) · Zbl 1045.70001
[8] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Texts in Applied Mathematics, vol. 49. Springer (2004) · Zbl 1066.70002
[9] Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 2. Springer (2007) · Zbl 1142.90029
[10] Conley, C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16(4), 732-746 (1968) · Zbl 0197.21105 · doi:10.1137/0116060
[11] Danielson, C., Borrelli, F.: Symmetric Explicit Model Predictive Control, vol. 4. IFAC (2012) · Zbl 1360.93454
[12] Dellnitz, M., Junge, O., Post, M., Thiere, B.: On target for Venus - set oriented computation of energy efficient low thrust trajectories. Celestial Mech. Dyn. Astron. 95, 357-370 (2006) · Zbl 1219.70067 · doi:10.1007/s10569-006-9008-y
[13] Dellnitz, M., Klus, S.: Sensing and control in symmetric networks. Dyn. Syst. 32(1), 61-79 (2017) · Zbl 1359.93047 · doi:10.1080/14689367.2016.1215410
[14] Dellnitz, M., Ober-Blöbaum, S., Post, M., Schütze, O., Thiere, B.: A multi-objective approach to the design of low thrust space trajectories using optimal control. Celestial Mech. Dyn. Astron. 105, 33-59 (2009) · Zbl 1223.70079 · doi:10.1007/s10569-009-9229-y
[15] Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113-136 (2005) · Zbl 1137.90015 · doi:10.1007/s10957-004-6468-7
[16] Djukić, D.S.: Noether’s theorem for optimum control systems. Int. J. Control 18(3), 667-672 (1973) · Zbl 0281.49009 · doi:10.1080/00207177308932544
[17] Dua, V., Pistikopoulos, E.N.: Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems. Ind. Eng. Chem. Res. 38(10), 3976-3987 (1999) · doi:10.1021/ie980792u
[18] Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005) · Zbl 1132.90001
[19] Faulwasser, T., Flaßkamp, K., Ober-Blöbaum, S., Worthmann, K.: Towards velocity turnpikes in optimal control of mechanical systems. IFAC-PapersOnLine 52(16), 490-495 (2019) · doi:10.1016/j.ifacol.2019.12.009
[20] Faulwasser, T., Flaßkamp, K., Ober-Blöbaum, S., Worthmann, K.: A dissipativity characterization of velocity turnpikes in optimal control problems for mechanical systems. In: Accepted for 24th International Symposium on Mathematical Theory of Networks and Systems 2021. arXiv:2002.04388 (2020)
[21] Flaßkamp, K.: On the optimal control of mechanical systems – hybrid control strategies and hybrid dynamics. Ph.D. thesis, University of Paderborn (2013)
[22] Flaßkamp, K., Hage-Packhäuser, S., Ober-Blöbaum, S.: Symmetry exploiting control of hybrid mechanical systems. J. Comput. Dyn. 2(1), 25-50 (2015) · Zbl 1353.37172 · doi:10.3934/jcd.2015.2.25
[23] Flaßkamp, K., Ober-Blöbaum, S.: Motion planning for mechanical systems with hybrid dynamics. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012. The European Consortium for Mathematics in Industry, vol. 19. Springer, Heidelberg (2014) · Zbl 1364.70036
[24] Flaßkamp, K., Ober-Blöbaum, S., Kobilarov, M.: Solving optimal control problems by exploiting inherent dynamical systems structures. J. Nonlinear Sci. 22(4), 599-629 (2012) · Zbl 1264.37013 · doi:10.1007/s00332-012-9140-7
[25] Flaßkamp, K., Ober-Blöbaum, S., Worthmann, K.: Symmetry and motion primitives in model predictive control. Math. Control Signals Syst. 31, 445-485 (2019) · Zbl 1426.93092 · doi:10.1007/s00498-019-00246-7
[26] Frazzoli, E.: Robust hybrid control for autonomous vehicle motion planning. Ph.D. thesis, Massachusetts Institute of Technology (2001)
[27] Frazzoli, E., Bullo, F.: On quantization and optimal control of dynamical systems with symmetries. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 817-823 (2002)
[28] Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Rob. 21(6), 1077-1091 (2005) · doi:10.1109/TRO.2005.852260
[29] García, J.J.V., Garay, V.G., Gordo, E.I., Fano, F.A., Sukia, M.L.: Intelligent Multi-Objective Nonlinear Model Predictive Control (iMO-NMPC): towards the ‘on-line’ optimization of highly complex control problems. Expert Syst. Appl. 39, 6527-6540 (2012) · doi:10.1016/j.eswa.2011.12.052
[30] Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial three-body problem. Nonlinearity 17, 1571-1606 (2004) · Zbl 1115.70007 · doi:10.1088/0951-7715/17/5/002
[31] Grizzle, J.W., Marcus, S.I.: Optimization of systems possessing symmetries. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and Optimization of Systems, pp. 513-524. Springer, Heidelberg (1984) · Zbl 0556.93030
[32] Grüne, L., Pannek, J.: Nonlinear Model Predictive Control, 2 edn. Springer (2017) · Zbl 1429.93003
[33] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer (1983) · Zbl 0515.34001
[34] Hernández, C., Naranjani, Y., Sardahi, Y., Liang, W., Schütze, O., Sun, J.Q.: Simple cell mapping method for multi-objective optimal feedback control design. Int. J. Dyn. Control 1(3), 231-238 (2013) · doi:10.1007/s40435-013-0021-1
[35] Hernández, C., Schütze, O., Sun, J.-Q.: Global multi-objective optimization by means of cell mapping techniques. In: EVOLVE-A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII, pp. 25-56. Springer (2017)
[36] Hernández, C., Ober-Blöbaum, S., Peitz, S.: Explicit multi-objective model predictive control for nonlinear systems under uncertainty. arXiv:2002.06006 (2020)
[37] Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Birkhäuser (2001) · Zbl 0966.90069
[38] Johansen, T.A.: On multi-parametric nonlinear programming and explicit nonlinear model predictive control. In: 41st IEEE Conference on Decision and Control, vol. 3, pp. 2768-2773 (2002)
[39] Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40, 293-300 (2004) · Zbl 1051.49018 · doi:10.1016/j.automatica.2003.09.021
[40] Kobilarov, M.: Discrete geometric motion control of autonomous vehicles. Ph.D. thesis, University of Southern California (2008)
[41] Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Shoot the Moon. Spaceflight Mech. 105(2), 1017-1030 (2000)
[42] Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celestial Mech. Dyn. Astron. 81(1-2), 63-73 (2001) · Zbl 0995.70009 · doi:10.1023/A:1013359120468
[43] Krüger, M., Witting, K., Trächtler, A., Dellnitz, M.: Parametric model-order reduction in hierarchical multiobjective optimization of mechatronic systems. In: Proceedings of the 18th IFAC World Congress 2011, Milano, Italy, vol. 18, pp. 12611-12619. Elsevier, Oxford (2011)
[44] Laabidi, K., Bouani, F., Ksouri, M.: Multi-criteria optimization in nonlinear predictive control. Math. Comput. Simul. 76(5-6), 363-374 (2008) · Zbl 1131.65054 · doi:10.1016/j.matcom.2007.04.002
[45] Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press (2012) · Zbl 1239.49001
[46] Logist, F., Sager, S., Kirches, C., Van Impe, J.F.: Efficient multiple objective optimal control of dynamic systems with integer controls. J. Process Control 20(7), 810-822 (2010) · doi:10.1016/j.jprocont.2010.04.009
[47] Marsden, J.E.: Lectures on Mechanics. Number 174 in London Mathematical Society Lecture Note Series. Cambridge University Press (1993)
[48] Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, 2nd edn., vol. 17. Springer (1999) · Zbl 0933.70003
[49] Marsden, J.E., Scheurle, J.: Lagrangian reduction and the double spherical pendulum. Z. Math. Phys. (ZAMP) 44, 17-43 (1993) · Zbl 0778.70016 · doi:10.1007/BF00914351
[50] Martín, A., Schütze, O.: Pareto Tracer: a predictor-corrector method for multi-objective optimization problems. Eng. Optim. 50(3), 516-536 (2018) · doi:10.1080/0305215X.2017.1327579
[51] McGehee, R.: Some homoclinic orbits for the restricted three-body problem. Ph.D. thesis, University of Wisconsin (1969)
[52] Melbourne, I., Dellnitz, M., Golubitsky, M.: The structure of symmetric attractors. Arch. Ration. Mech. Anal. 123(1), 75-98 (1993) · Zbl 0805.58043 · doi:10.1007/BF00386369
[53] Richard, M., Murray, S., Shankar, S., Li, Z.: A Mathematical Introduction to Robotic Manipulation. CRC Press Inc., USA (1994) · Zbl 0858.70001
[54] Núñez, A., Cortés, C.E., Sáez, D., De Schutter, B., Gendreau, M.: Multiobjective model predictive control for dynamic pickup and delivery problems. Control Eng. Pract. 32, 73-86 (2014) · doi:10.1016/j.conengprac.2014.07.004
[55] Ober-Blöbaum, S.: Discrete Mechanics and Optimal Control. Ph.D. thesis, University of Paderborn (2008)
[56] Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: an analysis. Control Optim. Calc. Var. 17(2), 322-352 (2011) · Zbl 1357.49120 · doi:10.1051/cocv/2010012
[57] Ober-Blöbaum, S., Peitz, S.: Explicit multiobjective model predictive control for nonlinear systems with symmetries. arXiv:1809.06238 (2018)
[58] Ober-Blöbaum, S., Ringkamp, M., zum Felde, G.: Solving multiobjective optimal control problems in space mission design using discrete mechanics and reference point techniques. In: 51st IEEE International Conference on Decision and Control, pp. 5711-5716, Maui, HI, USA, 10-13 December 2012
[59] Peitz, S.: Exploiting structure in multiobjective optimization and optimal control. Ph.D. thesis Paderborn University (2017)
[60] Peitz, S., Dellnitz, M.: A survey of recent trends in multiobjective optimal control - surrogate models, feedback control and objective reduction. Math. Comput. Appl. 23(2), 30 (2018)
[61] Peitz, S., Ober-Blöbaum, S., Dellnitz, M.: Multiobjective optimal control methods for the Navier-Stokes equations using reduced order modeling. Acta Applicandae Mathematicae 161(1), 171-199 (2019) · Zbl 1415.76221 · doi:10.1007/s10440-018-0209-7
[62] Schütze, O., Witting, K., Ober-Blöbaum, S., Dellnitz, M.: Set oriented methods for the numerical treatment of multiobjective optimization problems. In: Tantar, E., Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Studies in Computational Intelligence, vol. 447, pp. 187-219. Springer, Heidelberg (2013) · Zbl 1250.68052
[63] Sun, J.-Q., Xiong, F.-R., Schütze, O., Hernández, C.: Cell Mapping Methods-algorithmic Approaches and Applications. Nonlinear Systems and Complexity, vol. 99 (2019) · Zbl 1415.37005
[64] Sussmann, H.J., Willems, J.C.: 300 years of optimal control: from the Brachystochrone to the maximum principle. IEEE Control Syst. 17(3), 32-44 (1997) · Zbl 1014.49001 · doi:10.1109/37.588098
[65] Torres, D.F.M.: Conservation laws in optimal control. In: Colonius, F., Grüne, L. (eds.) Dynamics, Bifurcations, and Control, pp. 287-296. Springer, Heidelberg (2002) · Zbl 1100.49503
[66] Torres, D.F.M.: On the Noether theorem for optimal control. Eur. J. Control 8(1), 56-63 (2002) · Zbl 1293.49051 · doi:10.3166/ejc.8.56-63
[67] van der Schaft, A.J.: Symmetries in optimal control. SIAM J. Control Optim. 25(2), 245-259 (1987) · Zbl 0616.49003 · doi:10.1137/0325015
[68] Witting, K.: Numerical algorithms for the treatment of parametric multiobjective optimization problems and applications. Ph.D. thesis, University of Paderborn (2012)
[69] Zavala, V.M.: A multiobjective optimization perspective on the stability of economic MPC. IFAC-PapersOnLine 48(8), 974-980 (2015) · doi:10.1016/j.ifacol.2015.09.096
[70] Zavala, V. · Zbl 1271.93059 · doi:10.1016/j.automatica.2012.06.066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.