×

Stability analysis of a fractional-order SIS model on complex networks with linear treatment function. (English) Zbl 1485.92140

Summary: In recent years, many research works have been focusing on the propagation dynamics of infectious diseases in complex networks, and some interesting results have been obtained. The main purpose of this paper is to investigate the stability of a fractional SIS model on complex networks with linear treatment function. Based on the basic reproduction number, the stability of the disease-free equilibrium point and the endemic equilibrium point is analyzed in detail. That is, when \(R_0\leq1\), the disease-free equilibrium point is globally asymptotically stable and the disease will die out ultimately; when \(R_0>1\), there exists a unique endemic equilibrium point, and both the disease-free equilibrium point and the endemic equilibrium point are stable and the disease will not spread to all individuals. Finally, numerical simulations are presented to demonstrate the theoretical results. Moreover, the influence of the fractional-order parameter and the coefficient of the linear treatment function on the decay rate of the infectious is depicted separately.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology

References:

[1] Wu, G.-C., Zeng, D.-Q., Baleanu, D.: Fractional impulsive differential equations: exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 22, 180-192 (2019) · Zbl 1428.34025 · doi:10.1515/fca-2019-0012
[2] Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.G.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 69, 119-133 (2019) · Zbl 1509.65071 · doi:10.1016/j.cnsns.2018.09.004
[3] Baleanu, D., Jajarmi, A., Asad, J.H.: Classical and fractional aspects of two coupled pendulums. Rom. Rep. Phys. 71(1), 103 (2019)
[4] Baleanu, D., Sajjadi, S.S., Jajarmi, A., Asad, J.H.: New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus 134, 181 (2019) · doi:10.1140/epjp/i2019-12561-x
[5] Baleanu, D., Asad, J.H., Jajarmi, A.: The fractional model of spring pendulum: new features within different kernels. Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 19(3), 447-454 (2018)
[6] Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222-1227 (2019) · doi:10.1016/j.ijheatmasstransfer.2019.04.094
[7] Singh, J., Kumar, K., Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 231 (2018) · Zbl 1446.34018 · doi:10.1186/s13662-018-1680-1
[8] Li, Y., Chen, Y.-Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965-1973 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[9] Li, Y., Chen, Y.-Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810-1830 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[10] Liu, S., Jiang, W., Li, X.-Y., Zhou, X.-F.: Lyapunov stability analysis of fractional nonlinear systems. Appl. Math. Lett. 51, 13-19 (2016) · Zbl 1356.34061 · doi:10.1016/j.aml.2015.06.018
[11] Liu, S., Zhou, X.-F., Li, X.-Y., Wei, J.: Asymptotical stability of Riemann-Liouville fractional singular systems with multiple time-varying delays. Appl. Math. Lett. 65, 32-39 (2017) · Zbl 1356.34078 · doi:10.1016/j.aml.2016.10.002
[12] Zhang, F., Li, C., Chen, Y.-Q.: Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. J. Differ. Equ. 12, 635165 (2011) · Zbl 1239.34008
[13] Liu, P., Zeng, Z.-G., Wang, J.: Global synchronization of coupled fractional-order recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst., 1-11 (2018). https://doi.org/10.1109/TNNLS.2018.2884620 · doi:10.1109/TNNLS.2018.2884620
[14] Cruz, V.D.-L.: Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simul. 24, 75-85 (2015) · Zbl 1440.92067 · doi:10.1016/j.cnsns.2014.12.013
[15] Aguila-Camacho, N., Duarte-Mermoud, M.-A., Gallegos, J.-A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
[16] Wu, G.-C., Baleanu, D., Luo, W.-H.: Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl. Math. Comput. 314, 228-236 (2017) · Zbl 1426.39010
[17] Goswami, A., Kumar, D., Singh, J., Sushila: An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A 524, 563-575 (2019) · Zbl 07563873 · doi:10.1016/j.physa.2019.04.058
[18] Singh, J., Kumar, D., Baleanu, D., Rathore, S.: An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation. Appl. Math. Comput. 335, 12-24 (2018) · Zbl 1427.65324
[19] El-Saka, H.A.A.: Backward bifurcations in fractional-order vaccination models. J. Egypt. Math. Soc. 23, 49-55 (2015) · Zbl 1370.37150 · doi:10.1016/j.joems.2014.02.012
[20] Özalp, N., Demirci, E.: A fractional order SEIR model with vertical transmission. Math. Comput. Model. 54, 1-6 (2011) · Zbl 1225.34011 · doi:10.1016/j.mcm.2010.12.051
[21] Angstmann, C.-N., Henry, B.-I., McGann, A.-V.: A fractional-order infectivity SIR model. Physica A 452, 86-93 (2016) · Zbl 1400.92458 · doi:10.1016/j.physa.2016.02.029
[22] Elvin, J.-M., Sekson, S., Sanoe, K.: A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with the treatment compartment. Adv. Differ. Equ. 2019, 200 (2019) · Zbl 1459.92138 · doi:10.1186/s13662-019-2138-9
[23] Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67(4), 2433-2439 (2012) · Zbl 1243.93081 · doi:10.1007/s11071-011-0157-5
[24] Zhang, J., Sun, J.: Stability analysis of an SIS epidemic model with feedback mechanism on networks. Physica A 39, 24-32 (2014) · Zbl 1395.92179 · doi:10.1016/j.physa.2013.09.058
[25] Wang, Y., Cao, J.: A note on global stability of the virose equilibrium for network-based computer viruses’ epidemics. Appl. Math. Comput. 244, 726-740 (2014)
[26] Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001) · doi:10.1103/PhysRevLett.86.3200
[27] Wang, J., Wang, J., Liu, M., Li, Y.: Global stability analysis of a SIR epidemic model with demographics and time delay on networks. Physica A 410, 268-275 (2014) · Zbl 1395.92169 · doi:10.1016/j.physa.2014.05.011
[28] Xu, D.-G., Xu, X.-Y., Yang, C.-H., Gui, W.-H.: Spreading dynamics and synchronization behavior of periodic diseases on complex networks. Physica A 466, 544-551 (2016) · Zbl 1400.92594 · doi:10.1016/j.physa.2016.09.047
[29] Zhu, G., Fu, X., Tang, Q., Li, K.: Mean-field modeling approach for understanding epidemic dynamics in interconnected networks. Chaos Solitons Fractals 80, 117-124 (2015) · Zbl 1354.05126 · doi:10.1016/j.chaos.2015.08.004
[30] Juang, J., Liang, J.-H.: Analysis of a general SIS model with infective vectors on the complex networks. Physica A 437, 382-395 (2015) · Zbl 1400.92505 · doi:10.1016/j.physa.2015.06.006
[31] Wang, Y., Cao, J., Alofi, A., Al-Mazrooei, A., Elaiw, A.: Revisiting node-based SIR models in complex networks with degree correlations. Physica A 437, 75-88 (2015) · Zbl 1400.92553 · doi:10.1016/j.physa.2015.05.103
[32] Huo, J.-J., Zhao, H.-Y.: Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks. Physica A 448, 41-45 (2016) · Zbl 1400.92492 · doi:10.1016/j.physa.2015.12.078
[33] Hajipour, M., Jajarmi, A., Baleanu, D.: On the accurate discretization of a highly nonlinear boundary value problem. Numer. Algorithms 79(3), 679-695 (2018) · Zbl 1405.65143 · doi:10.1007/s11075-017-0455-1
[34] Hajipour, M., Jajarmi, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146-158 (2018) · Zbl 1429.65183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.