×

Complete classification of spatial surfaces with parallel mean curvature vector in arbitrary non-flat pseudo-Riemannian space forms. (English) Zbl 1183.53050

The author classifies spatial surfaces with parallel mean curvature vector in pseudo-Riemannian space forms with non-vanishing curvature. Together with a previous paper of the author [Classification of spatial surfaces with parallel mean curvature vector in pseudo-Euclidean spaces of arbitrary dimension. J. Math. Phys. 50, No. 4, Paper No. 043504 (2009; Zbl 1214.53021)], this achieves the complete classification of spatial surfaces with parallel mean curvature vector in all pseudo-Riemannian space forms.

MSC:

53C40 Global submanifolds
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
83C15 Exact solutions to problems in general relativity and gravitational theory

Citations:

Zbl 1214.53021

References:

[1] Chen B.Y., Geometry of submanifolds, M. Dekker, New York, 1973; · Zbl 0262.53036
[2] Chen B.Y., On the surface with parallel mean curvature vector, Indiana Univ. Math. J., 1973, 22, 655-666 http://dx.doi.org/10.1512/iumj.1973.22.22053; · Zbl 0252.53021
[3] Chen B.Y., Total mean curvature and submanifolds of finite type, World Scientific, New Jersey, 1984; · Zbl 0537.53049
[4] Chen B.Y., Finite type submanifolds in pseudo-Euclidean spaces and applications, Kodai Math. J., 1985, 8, 358-374 http://dx.doi.org/10.2996/kmj/1138037104; · Zbl 0586.53022
[5] Chen B.Y., Riemannian submanifolds, Handbook of differential geometry, Vol. I, 187-418, North-Holland, Amsterdam, 2000; · Zbl 0968.53002
[6] Chen B.Y., Marginally trapped surfaces and Kaluza-Klein theory, Intern. Elect. J. Geom., 2009, 2, 1-16; · Zbl 1207.83003
[7] Chen B.Y., Classification of spatial surfaces with parallel mean curvature vector in pseudo-Euclidean spaces of arbitrary dimension, J. Math. Phys., 2009, 50, 043503, 14 pages http://dx.doi.org/10.1063/1.3100755; · Zbl 1214.53021
[8] Chen B.Y., Van der Veken J., Spatial and Lorentzian surfaces in Robertson-Walker space-times, J. Math. Phys., 2007, 48, 073509, 12 pages http://dx.doi.org/10.1063/1.2748616; · Zbl 1144.81324
[9] Chen B.Y., Van der Veken J., Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms, Tohoku Math. J., 2009, 61, 1-40 http://dx.doi.org/10.2748/tmj/1238764545; · Zbl 1182.53018
[10] Hawking S.W., Penrose R., The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. London Ser. A, 1970, 314, 529-548 http://dx.doi.org/10.1098/rspa.1970.0021; · Zbl 0954.83012
[11] Magid M.A., Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math., 1984, 8, 31-54; · Zbl 0549.53052
[12] O’Neill B., Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1982; · Zbl 0531.53051
[13] Penrose R., Gravitational collapse and space-time singularities, Phys. Rev. Lett., 1965, 14, 57-59 http://dx.doi.org/10.1103/PhysRevLett.14.57; · Zbl 0125.21206
[14] Takahashi T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 1966, 18, 380-385 http://dx.doi.org/10.2969/jmsj/01840380; · Zbl 0145.18601
[15] Yau S.T., Submanifolds with constant mean curvature I, Amer. J. Math., 1974, 96, 346-366 http://dx.doi.org/10.2307/2373638; · Zbl 0304.53041
[16] Verstraelen L., Pieters M., Some immersions of Lorentz surfaces into a pseudo-Riemannian space of constant curvature and of signature (2; 2), Rev. Roumaine Math. Pures Appl., 1976, 21, 593-600; · Zbl 0333.53017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.