×

Classification of spatial surfaces with parallel mean curvature vector in pseudo-Euclidean spaces of arbitrary dimension. (English) Zbl 1214.53021

Summary: Spatial surfaces with parallel mean curvature vector play some important roles in general relativity, theory of harmonic maps, as well as in differential geometry. Recently, spatial surfaces in four-dimensional Minkowski space time with parallel mean curvature vector were classified by the author and J. Van der Veken [Tôhoku Math. J. (2) 61, No. 1, 1–40 (2009; Zbl 1182.53018)]. In this article, we completely classify spatial surfaces with parallel mean curvature vector in pseudo-Euclidean spaces of arbitrary dimension. The main result states that there exist 16 families of such surfaces. As by-product, we achieve the complete classification of spatial surfaces with parallel mean curvature vector in Minkowski space times of arbitrary dimension.
Editorial remark: No review copy delivered

MSC:

53C10 \(G\)-structures
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics

Citations:

Zbl 1182.53018
Full Text: DOI

References:

[1] DOI: 10.1007/BF01456410 · Zbl 0476.53013 · doi:10.1007/BF01456410
[2] DOI: 10.1007/BF02764073 · Zbl 1038.58011 · doi:10.1007/BF02764073
[3] Chen B. Y., Geometry of Submanifolds (1973) · Zbl 0262.53036
[4] DOI: 10.1142/0065 · doi:10.1142/0065
[5] Chen B. Y., Soochow J. Math. 22 pp 117– (1996)
[6] Chen, B. Y. Riemannian submanifolds, Handbook of Differential Geometry (North-Holland, Amsterdam, 2000), Vol. I, pp. 187–418.
[7] Chen B. Y., C. R. Acad. Sci. Paris 317 pp 961– (1993)
[8] Chen B. Y., Memoirs Fac. Sci. Kyushu Univ. Ser. A, Math. 45 pp 325– (1991)
[9] DOI: 10.1088/0264-9381/24/3/003 · Zbl 1141.53065 · doi:10.1088/0264-9381/24/3/003
[10] DOI: 10.1063/1.2748616 · Zbl 1144.81324 · doi:10.1063/1.2748616
[11] DOI: 10.2748/tmj/1238764545 · Zbl 1182.53018 · doi:10.2748/tmj/1238764545
[12] DOI: 10.1016/j.jmaa.2005.05.049 · Zbl 1091.53038 · doi:10.1016/j.jmaa.2005.05.049
[13] DOI: 10.1088/0264-9381/24/22/009 · Zbl 1165.83334 · doi:10.1088/0264-9381/24/22/009
[14] DOI: 10.1017/CBO9780511524646 · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[15] DOI: 10.1098/rspa.1970.0021 · Zbl 0954.83012 · doi:10.1098/rspa.1970.0021
[16] DOI: 10.1090/S0002-9904-1972-12942-2 · Zbl 0236.53054 · doi:10.1090/S0002-9904-1972-12942-2
[17] DOI: 10.1007/BF00762194 · Zbl 0537.53064 · doi:10.1007/BF00762194
[18] DOI: 10.1007/BF01297766 · Zbl 0866.53011 · doi:10.1007/BF01297766
[19] Magid M. A., Tsukuba J. Math. 8 pp 31– (1984)
[20] O’Neill B., Semi-Riemannian Geometry with Applications to Relativity (1982)
[21] DOI: 10.1103/PhysRevLett.14.57 · Zbl 0125.21206 · doi:10.1103/PhysRevLett.14.57
[22] Penrose R., Black Holes and Relativistic Stars pp 103– (1998)
[23] Verstraelen L., Rev. Roum. Math. Pures Appl. 21 pp 593– (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.