×

Unique ergodicity for zero-entropy dynamical systems with the approximate product property. (English) Zbl 1466.37011

Summary: We show that for every topological dynamical system with the approximate product property, zero topological entropy is equivalent to unique ergodicity. Equivalence of minimality is also proved under a slightly stronger condition. Moreover, we show that unique ergodicity implies the approximate product property if the system has periodic points.

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37B40 Topological entropy
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37E05 Dynamical systems involving maps of the interval
37A25 Ergodicity, mixing, rates of mixing

References:

[1] Alsedà, L. L.; Del Río, M. A.; Rodríguez, J. A., Transitivity and dense periodicity for graph maps, Journal of Difference Equations and Applications, 9, 6, 577-598 (2003) · Zbl 1032.37025 · doi:10.1080/1023619021000040515
[2] Béguin, F.; Crovisier, S.; Le Roux, F., Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: the Denjoy-Rees technique, Ann. Sci. École Norm. Sup., 40, 4, 251-308 (2007) · Zbl 1132.37003 · doi:10.1016/j.ansens.2007.01.001
[3] Blokh, A. M., Decomposition of dynamical systems on an interval, Russ. Math. Surv., 38, 133-134 (1983) · Zbl 0557.28017 · doi:10.1070/RM1983v038n05ABEH003504
[4] Bomfim, T.; Torres, M. J.; Varandas, P., Topological features of flows with the reparametrized gluing orbit property, Journal of Differential Equations, 262, 8, 4292-4313 (2017) · Zbl 1381.37024 · doi:10.1016/j.jde.2017.01.008
[5] Bowen, R., Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154, 377-397 (1971) · Zbl 0212.29103
[6] Buzzi, J., Specification on the interval, Trans. Amer. Math. Soc., 349, 7, 2737-2754 (1997) · Zbl 0870.58017 · doi:10.1090/S0002-9947-97-01873-4
[7] Denker, M.; Grillenberger, C.; Sigmund, K., Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527 (1976), Berlin: Springer-Verlag, Berlin · Zbl 0328.28008
[8] Guan, L.; Sun, P.; Wu, W., Measures of intermediate entropies and homogeneous dynamics, Nonlinearity, 30, 3349-3361 (2017) · Zbl 1388.37004 · doi:10.1088/1361-6544/aa8040
[9] Hahn, F.; Katznelson, Y., On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc., 126, 335-360 (1967) · Zbl 0191.21502 · doi:10.1090/S0002-9947-1967-0207959-1
[10] Herman, M., Construction d’un difféomorphisme minimal d’entropie topologique non nulle, Ergodic Theory and Dynamical Systems, 1, 65-76 (1981) · Zbl 0469.58008 · doi:10.1017/S0143385700001164
[11] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S., 51, 137-173 (1980) · Zbl 0445.58015 · doi:10.1007/BF02684777
[12] Konieczny, J.; Kupsa, M.; Kwietniak, D., Arcwise connectedness of the set of ergodic measures of hereditary shifts, Proceedings of the American Mathematical Society, 146, 8, 3425-3438 (2018) · Zbl 1390.37006 · doi:10.1090/proc/14029
[13] Kwietniak, D., Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts, Discrete and Continuous Dynamical Systems — A, 33, 6, 2451-2467 (2013) · Zbl 1271.37013 · doi:10.3934/dcds.2013.33.2451
[14] Kwietniak, D.; Lacka, M.; Oprocha, P., A panorama of specification-like properties and their consequences, Contemporary Mathematics, 669, 155-186 (2016) · Zbl 1376.37024 · doi:10.1090/conm/669/13428
[15] Lindenstrauss, J.; Olsen, G.; Sternfeld, Y., The Poulsen simplex, Ann. Inst. Fourier (Grenoble), 28, 1, 91-114 (1978) · Zbl 0363.46006 · doi:10.5802/aif.682
[16] Misiurewicz, M.; Smítal, J., Smooth chaotic maps with zero topological entropy, Ergodic Theory and Dynamical Systems, 8, 3, 421-424 (1988) · Zbl 0689.58028 · doi:10.1017/S0143385700004557
[17] Pfister, C. E.; Sullivan, W. G., Large deviations estimates for dynamical systems without the specification property. Application to the β-shifts, Nonlinearity, 18, 237-261 (2005) · Zbl 1069.60029 · doi:10.1088/0951-7715/18/1/013
[18] Phelps, R. R., Lectures on Choquet’s theorem, Lecture Notes in Mathematics, Vol. 1757 (2001), Berlin: Springer-Verlag, Berlin · Zbl 0997.46005
[19] Quas, A.; Soo, T., Ergodic universality of some topological dynamical systems, Trans. Amer. Math. Soc., 368, 6, 4137-4170 (2016) · Zbl 1354.37010 · doi:10.1090/tran/6489
[20] Sun, P., Zero-entropy invariant measures for skew product diffeomorphisms, Ergodic Theory and Dynamical Systems, 30, 923-930 (2010) · Zbl 1202.37010 · doi:10.1017/S0143385709000376
[21] Sun, P., Measures of intermediate entropies for skew product diffeomorphisms, Discrete and Continuous Dynamical Systems — A, 27, 3, 1219-1231 (2010) · Zbl 1192.37036 · doi:10.3934/dcds.2010.27.1219
[22] Sun, P., Density of metric entropies for linear toral automorphisms, Dynamical Systems, 27, 2, 197-204 (2012) · Zbl 1244.37007 · doi:10.1080/14689367.2011.649246
[23] Sun, P., Minimality and gluing orbit property, Discrete and Continuous Dynamical Systems — A, 39, 7, 4041-4056 (2019) · Zbl 1429.37008 · doi:10.3934/dcds.2019162
[24] Sun, P., On the entropy of flows with reparametrized gluing orbit property, Acta Mathematica Scientia, 40B, 3, 855-862 (2020) · Zbl 1499.37039 · doi:10.1007/s10473-020-0318-z
[25] Sun, P., Denseness of intermediate pressures for systems with the Climenhaga-Thompson structure, Journal of Mathematical Analysis and Applications, 487, 2, 124027 (2020) · Zbl 1439.37042 · doi:10.1016/j.jmaa.2020.124027
[26] Sun, P., Zero-entropy dynamical systems with the gluing orbit property, Advances in Mathematics, 372, 107294 (2020) · Zbl 1450.37016 · doi:10.1016/j.aim.2020.107294
[27] Sun, P.: Ergodic measures of intermediate entropies for dynamical systems with approximate product property. arXiv:1906.09862, 2019
[28] Sun, P.: Equilibrium states of intermediate entropies. arXiv:2006.06358, 2020
[29] Ures, R., Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part, Proceedings of the American Mathematical Society, 140, 6, 1973-1985 (2012) · Zbl 1258.37033 · doi:10.1090/S0002-9939-2011-11040-2
[30] Walters, P., An Introduction to Ergodic Theory (1982), New York: Springer-Verlag, New York · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.