×

Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: The Denjoy-Rees technique. (English. French summary) Zbl 1132.37003

Summary: M. Rees [J. Lond. Math. Soc. 23, 537–550 (1981; Zbl 0451.58022)] constructed a minimal homeomorphism of the \(n\)-torus with positive topological entropy. This homeomorphism \(f\) is obtained by enriching the dynamics of an irrational rotation \(R\). We improve Rees construction, allowing to start with any homeomorphism \(R\) instead of an irrational rotation and to control precisely the measurable dynamics of \(f\). This yields in particular the following result: Any compact manifold of dimension \(d\geq 2\) which carries a minimal uniquely ergodic homeomorphism also carries a minimal uniquely ergodic homeomorphism with positive topological entropy.
More generally, given some homeomorphism \(R\) of a compact manifold and some homeomorphism \(h_C\) of a Cantor set, we construct a homeomorphism \(f\) which “looks like” \(R\) from the topological viewpoint and “looks like” \(R\times h_C\) from the measurable viewpoint. This construction can be seen as a partial answer to the following realisability question: which measurable dynamical systems are represented by homeomorphisms on manifolds?

MSC:

37A05 Dynamical aspects of measure-preserving transformations
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)

Citations:

Zbl 0451.58022

References:

[1] Anosov D. , Katok A. , New examples in smooth ergodic theory. Ergodic diffeomorphisms , Trans. Moscow Math. Soc. 23 ( 1970 ) 1 - 35 . MR 370662 | Zbl 0255.58007 · Zbl 0255.58007
[2] Béguin F. , Crovisier S. , Le Roux F. , Patou A. , Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz , Nonlinearity 17 ( 4 ) ( 2004 ) 1427 - 1453 . MR 2069713 | Zbl 1077.37032 · Zbl 1077.37032 · doi:10.1088/0951-7715/17/4/016
[3] Béguin F. , Crovisier S. , Le Roux F. , Pseudo-rotations of the open annulus: variation on a theorem of J. Kwapisz , Bull. Braz. Math. Soc. (N.S.) 37 ( 2006 ) 275 - 306 . MR 2266384 | Zbl 1105.37029 · Zbl 1105.37029 · doi:10.1007/s00574-006-0013-2
[4] Béguin F ., Crovisier S ., Jaeger T ., Le Roux F ., Denjoy constructions for fibered homeomorphism of the two-torus, in preparation.
[5] Bing R.H. , Tame Cantor sets in \({E}^{3}\) , Pacific J. Math. 11 ( 1961 ) 435 - 446 . Article | MR 130679 | Zbl 0111.18606 · Zbl 0111.18606 · doi:10.2140/pjm.1961.11.435
[6] Bing R.H. , The Geometric Topology of 3-Manifolds , American Mathematical Society Colloquium Publications , vol. 40 , American Mathematical Society , Providence, RI , 1983 . MR 728227 | Zbl 0535.57001 · Zbl 0535.57001
[7] Brown M. , A proof of the generalized Schoenflies theorem , Bull. Amer. Math. Soc. 66 ( 1960 ) 74 - 76 . Article | MR 117695 | Zbl 0132.20002 · Zbl 0132.20002 · doi:10.1090/S0002-9904-1960-10400-4
[8] Denjoy A. , Sur les courbes définies par les équations différentielles à la surface du tore , J. Math. Pures Appl. Ser. IX 11 ( 1932 ) 333 - 375 . Article | Zbl 0006.30501 · Zbl 0006.30501
[9] Denker M. , Grillenberger C. , Sigmund K. , Ergodic Theory on Compact Spaces , Springer Lecture Notes in Math. , vol. 527 , Springer-Verlag , Berlin/New York , 1976 . MR 457675 | Zbl 0328.28008 · Zbl 0328.28008 · doi:10.1007/BFb0082364
[10] Fathi A. , Herman M. , Existence de difféomorphismes minimaux , in: Dynamical Systems, vol. I , Warsaw , Astérisque , vol. 49 , Soc. Math. France , Paris , 1977 , 37-59. Zbl 0374.58010 · Zbl 0374.58010
[11] Fayad B. , Katok A. , Constructions in elliptic dynamics , Ergodic Theory Dynam. Systems 24 ( 5 ) ( 2004 ) 1477 - 1520 . MR 2104594 | Zbl 1089.37012 · Zbl 1089.37012 · doi:10.1017/S0143385703000798
[12] Handel M. , A pathological area preserving \({C}^{\infty }\) diffeomorphism of the plane , Proc. Amer. Math. Soc. 86 ( 1 ) ( 1982 ) 163 - 168 . MR 663889 | Zbl 0509.58031 · Zbl 0509.58031 · doi:10.2307/2044419
[13] Herman M. , Construction d’un difféomorphisme minimal d’entropie topologique non-nulle , Ergodic Theory Dynam. Systems 1 ( 1981 ) 65 - 76 . MR 627787 | Zbl 0469.58008 · Zbl 0469.58008 · doi:10.1017/S0143385700001164
[14] Herman M. , Construction of some curious diffeomorphisms of the Riemann sphere , J. London Math. Soc. (2) 34 ( 2 ) ( 1986 ) 375 - 384 . MR 856520 | Zbl 0603.58017 · Zbl 0603.58017 · doi:10.1112/jlms/s2-34.2.375
[15] Homma T. , On tame imbedding of 0-dimensional compact sets in \({E}^{3}\) , Yokohama Math. J. 7 ( 1959 ) 191 - 195 . MR 124037 | Zbl 0094.36005 · Zbl 0094.36005
[16] Jäger T. , Stark J. , Towards a classification for quasi-periodically forced circle homeomorphisms , J. London Math. Soc. 73 ( 2006 ) 727 - 744 . MR 2241977 | Zbl 1095.37013 · Zbl 1095.37013 · doi:10.1112/S0024610706022782
[17] Katok A. , Lyapounov exponents, entropy and periodic orbits for diffeomorphisms , Publications Mathématiques de l’I.H.É.S. 51 ( 1980 ) 131 - 173 . Numdam | MR 573822 | Zbl 0445.58015 · Zbl 0445.58015 · doi:10.1007/BF02684777
[18] Le Calvez P. , Rotation numbers in the infinite annulus , Proc. Amer. Math. Soc. 129 ( 11 ) ( 2001 ) 3221 - 3230 . MR 1844997 | Zbl 0990.37029 · Zbl 0990.37029 · doi:10.1090/S0002-9939-01-06165-2
[19] Lind D. , Thouvenot J.-P. , Measure-preserving homeomorphisms of the torus represent all finite entropy ergodic transformations , Math. Systems Theory 11 ( 3 ) ( 1977/78 ) 275 - 282 . MR 584588 | Zbl 0377.28011 · Zbl 0377.28011 · doi:10.1007/BF01768481
[20] Osborne R.P. , Embedding Cantor sets in a manifold. I. Tame Cantor sets in \({E}^{n}\) , Michigan Math. J. 13 ( 1966 ) 57 - 63 . Article | MR 187225 | Zbl 0138.18902 · Zbl 0138.18902 · doi:10.1307/mmj/1028999480
[21] Oxtoby J.C. , Ulam S.M. , Measure-preserving homeomorphisms and metrical transitivity , Ann. of Math. (2) 42 ( 1941 ) 874 - 920 . MR 5803 | Zbl 0063.06074 · Zbl 0063.06074 · doi:10.2307/1968772
[22] Rees M. , A minimal positive entropy homeomorphism of the 2-torus , J. London Math. Soc. 23 ( 1981 ) 537 - 550 . MR 616561 | Zbl 0451.58022 · Zbl 0451.58022 · doi:10.1112/jlms/s2-23.3.537
[23] Sanford M.D. , Walker R.B. , Extending maps of a Cantor set product with an arc to near homeomorphisms of the 2-disk , Pacific J. Math. 192 ( 2 ) ( 2000 ) 369 - 384 . MR 1744576 | Zbl 1092.37502 · Zbl 1092.37502 · doi:10.2140/pjm.2000.192.369
[24] Thouvenot J.-P. , Entropy, isomorphisms and equivalence , in: Katok A. , Hasselblatt B. (Eds.), Handbook of Dynamical Systems , vol. 1A , Elsevier , Amsterdam , 2002 . MR 1928517 | Zbl 1084.37007 · Zbl 1084.37007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.