×

Automatic coarsening of three dimensional anisotropic unstructured meshes for multigrid applications. (English) Zbl 1250.65147

Summary: This paper describes an algorithm designed for the automatic coarsening of three-dimensional unstructured simplicial meshes. This algorithm can handle very anisotropic meshes like the ones typically used to capture the boundary layers in computational fluid dynamics with low Reynolds turbulence modeling that can have aspect ratio as high as \(10^{4}\). It is based on the concept of mesh generation governed by metrics and on the use of a natural metric mapping the initial (fine) mesh into an equilateral one. The paper discusses and compares several ways to define node based metric from element based metric. Then the semi-coarsening algorithm is described. Several application examples are presented, including a full three-dimensional complex model of an aircraft with extremely high anisotropy.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
76N20 Boundary-layer theory for compressible fluids and gas dynamics
76F02 Fundamentals of turbulence

References:

[1] M. Adams, A parallel maximal independent set algorithm, in: Proceedings of the \(5^{th}\); M. Adams, A parallel maximal independent set algorithm, in: Proceedings of the \(5^{th}\)
[2] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Fast and simple computations on tensors with log-Euclidean metrics INRIA Research Report-NO 5584.; V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Fast and simple computations on tensors with log-Euclidean metrics INRIA Research Report-NO 5584. · Zbl 1144.47015
[3] Borouchaki, H.; George, P.-L.; Hecht, F.; Laug, P.; Saltel, E., Delaunay mesh generation governed by metric specifications. Part 1: Algorithms, Finite Elements in Analysis and Design, 25, 61-83 (1997) · Zbl 0897.65076
[4] Borouchaki, H.; George, P.-L.; Mohammadi, B., Delaunay mesh generation governed by metric specifications. Part 2: Application examples, Finite Elements in Analysis and Design, 25, 85-109 (1997) · Zbl 0897.65077
[5] Borouchaki, H.; Hecht, F.; Frey, P., Mesh gradation control, International Journal for Numerical Methods in Engineering, 43, 1143-1165 (1999) · Zbl 0944.76071
[6] Carre, G.; Carte, G.; Guillard, H.; Lanteri, S., Multigrid strategies for CFD problems on unstructured meshes in multigrid methods VI, (Riemslagh, Krys, Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering, Lecture Notes in Computational Science and Engineering, vol. 14 (2000), Springer), 1-11 · Zbl 1015.76049
[7] G. Carte, T. Coupez, H. Guillard, S. Lanteri, Coarsening techniques in multigrid applications on unstructured meshes, European Congress on Computational Methods in Applied Science and Engineering, ECCOMAS 2000, Barcelona, 2000.; G. Carte, T. Coupez, H. Guillard, S. Lanteri, Coarsening techniques in multigrid applications on unstructured meshes, European Congress on Computational Methods in Applied Science and Engineering, ECCOMAS 2000, Barcelona, 2000.
[8] Chan, T.; Smith, B., Domain decomposition and multigrid algorithms for elliptic problems unstructured meshes, Electronic Transactions in Numerical Analysis, 2, 171-182 (1994) · Zbl 0852.65108
[9] Coupez, T., Génération de maillage et adaptation de maillage par optimisation locale, Revue Européene des éléments finis, 9, 4, 403-423 (2002) · Zbl 0953.65089
[10] J. Dompierre, M., Vallet, M. Fortin, Y. Bourgault, W. Habashi, Anisotropic mesh adaptation: towards a solver and user independent cfd., AIAA paper, 1997, 97-0861.; J. Dompierre, M., Vallet, M. Fortin, Y. Bourgault, W. Habashi, Anisotropic mesh adaptation: towards a solver and user independent cfd., AIAA paper, 1997, 97-0861. · Zbl 1101.76356
[11] P.T. Fletcher, S. Joshi, Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors, in: Proceedings of Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), 2004.; P.T. Fletcher, S. Joshi, Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors, in: Proceedings of Workshop on Computer Vision Approaches to Medical Image Analysis (CVAMIA), 2004.
[12] Francescatto, J.; Dervieux, A., A semi-coarsening strategy for unstructured multigrid method based on agglomeration, International Journal of Numerical Methods and Fluids, 26, 927-957 (1998) · Zbl 0928.76063
[13] Fréchet, M., Les éléments aléatoires de nature quelconque dans un espace distancié, Annales of H. Poincaré Institute, 10, 215-310 (1948) · Zbl 0035.20802
[14] P.-L. George, H. Borouchaki, Premières expériences de maillage automatique par une méthode de Delaunay anisotrope en trois dimensions, Technical report 0272, INRIA, 2002. <http://www.inria.fr/rrrt/rt-0272.html>; P.-L. George, H. Borouchaki, Premières expériences de maillage automatique par une méthode de Delaunay anisotrope en trois dimensions, Technical report 0272, INRIA, 2002. <http://www.inria.fr/rrrt/rt-0272.html>
[15] Gruau, C.; Coupez, T., 3D tetrahedral unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric, Computer Methods in Applied Mechanics and Engineering, 194, 48-49, 4951-4976 (2005) · Zbl 1102.65122
[16] H. Guillard, Node-Nested Multi-Grid with Delaunay Coarsening INRIA Research Report No 1898, 1993.; H. Guillard, Node-Nested Multi-Grid with Delaunay Coarsening INRIA Research Report No 1898, 1993.
[17] Guillard, H.; Janka, A.; Vanek, P., Analysis of an algebraic Petrov-Galerkin smoothed aggregation multigrid method, Applied Numerical Mathematics, 58, 1861-1874 (2008) · Zbl 1158.65082
[18] H. Guillard, P. Vanek, An aggregation multigrid solver for convection-diffusion problems on unstructured meshes, University of Colorado in Denver, Center for Computational Mathematics, Report UCD-CCM No 130, 1996.; H. Guillard, P. Vanek, An aggregation multigrid solver for convection-diffusion problems on unstructured meshes, University of Colorado in Denver, Center for Computational Mathematics, Report UCD-CCM No 130, 1996.
[19] Huang, W., Metric tensors for anisotropic mesh generation, Journal of Computational Physics, 204, 633-665 (2005) · Zbl 1067.65140
[20] A. Janka, Multigrid methods for compressible fluids, Ph.D. in Applied Mathematics, University of Nice Sophia-Antipolis, 2002; A. Janka, Multigrid methods for compressible fluids, Ph.D. in Applied Mathematics, University of Nice Sophia-Antipolis, 2002
[21] Karcher, H., Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics, 30, 5, 509-541 (1977) · Zbl 0354.57005
[22] Koobus, B.; Lallemand, M. H.; Dervieux, A., Unstructured volume agglomeration MG: solution of Poisson equation, Int J. Num. Mesh. Fluids, 18, 27-42 (1993) · Zbl 0794.76068
[23] Lallemand, M. H.; Dervieux, H. StéveA., Unstructured multigriding by volume agglomeration: current status, Computers and in Fluids, 21, 397-433 (1992) · Zbl 0753.76136
[24] Li, X.; Shephard, M.; Beall, M., 3D anisotropic mesh adaptation by mesh modification, Computer Methods in Applied Mechanics and Engineering, 194, 48-49, 4915-4950 (2005) · Zbl 1090.76060
[25] Lohner, R.; Beum, J., Adaptive h-refinement on 3D unstructured grids for transient problems, International Journal on Numerical Methods in Fluids, 14, 1407-1419 (1992) · Zbl 0753.76099
[26] D. Mavriplis, Adaptive meshing techniques for viscous flow calculations on mixed-element unstructured meshes, AIAA paper, 1997, 97-0857.; D. Mavriplis, Adaptive meshing techniques for viscous flow calculations on mixed-element unstructured meshes, AIAA paper, 1997, 97-0857.
[27] Mavriplis, D., Multigrid strategies for viscous ow solvers on anisotropic unstructured meshes, Journal of Computational Physics, 145, 141-165 (1998) · Zbl 0926.76066
[28] J.D. Müller, Coarsening 3-D Hybrid Meshes for multigrid methods, in: Copper Mountain Conference, 1999.; J.D. Müller, Coarsening 3-D Hybrid Meshes for multigrid methods, in: Copper Mountain Conference, 1999.
[29] Müller, J. D., Anisotropic adaptation and multigrid for hybrid grids, International Journal of Numerical Methods in Fluids, 40, 445-455 (2002) · Zbl 1061.76516
[30] Ollivier-Gooch, C. F., Coarsening unstructured meshes by edge contraction, International Journal for Numerical Methods in Engineering, 57, 3, 391-414 (2003) · Zbl 1062.76527
[31] X. Pennec, Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements, in: IEEE Workshop on Non-linear Signal and Image Processing, 1999.; X. Pennec, Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements, in: IEEE Workshop on Non-linear Signal and Image Processing, 1999.
[32] Ruge, J.; Stuben, K., Algebraic multigrid methods, (Mc Cormick, S., Multigrid Methods. Multigrid Methods, Frontiers in Applied Math, vol. 5 (2000), SIAM: SIAM Philadelphia)
[33] Tam, A.; Ait-Ali-Yahia, D.; Robichaud, M. P.; Moore, M.; Kozel, V.; Habashi, W. G., Anisotropic mesh adaptation for 3D flows on structured and unstructured grids, Computer Methods in Applied Mechanics and Engineering, 189, 4, 1205-1230 (2000) · Zbl 1005.76061
[34] Vanek, P.; Mandel, J.; Brezina, M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing, 56, 179-196 (1996) · Zbl 0851.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.