×

Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. (English) Zbl 1525.74110

Summary: Phononic materials are periodically arranged building blocks in the form of material properties, geometries, and/or boundary conditions. This synthetic architecture makes phononic materials capable of manipulating mechanical waves that have potential applications across multiple disciplines of physics and engineering. Initial studies have been focused on linear phononic materials that assume small-amplitude waves. The incorporation of nonlinearity, however, has been shown to open opportunities for a new realm of dynamic responses valid beyond the small-amplitude regime. Acknowledging this potential, research in the field has undergone a paradigm shift in the last decade or so by exploiting various sources of nonlinearities within phononic materials. A comprehensive overview of the origin of nonlinearities and how they are modeled, solved, and realized in phononic materials, and specifically, what role nonlinearity plays in enabling rich nonlinear wave responses, is crucial for the future advancement of the field. In this review, we discuss recent advances in nonlinear wave propagation in phononic materials and metamaterials by drawing links between different phononic media and their nonlinearity-induced behaviors. We first briefly discuss the analytical methods employed to solve nonlinear wave propagation problems by focusing on foundational models. We then review physics-based sources of nonlinearities, primarily, material, geometric, and contact nonlinearities and elucidate nonlinear wave responses enabled by them in phononic materials and metamaterials. Finally, we outline existing challenges and possible future directions in nonlinear phononics and metamaterials.

MSC:

74J30 Nonlinear waves in solid mechanics
Full Text: DOI

References:

[1] Brillouin, L., Wave Propagation in Periodic Structures (1953), New York: Dover Publications Inc, New York · Zbl 0050.45002
[2] Liu, Z., Zhang, X.X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734-1736 (2000)
[3] Yilmaz, C., Hulbert, G.M., Kikuchi, N.: Phononic band gaps induced by inertial amplification in periodic media. Phys. Rev. B 76(5), 054309 (2007). doi:10.1103/PhysRevB.76.054309
[4] Zhu, R.; Liu, XN; Hu, GK; Sun, CT; Huang, GL, Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial, Nat. Commun., 5, 1, 5510 (2014) · doi:10.1038/ncomms6510
[5] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X., Ultrasonic metamaterials with negative modulus, Nat. Mater., 5, 6, 452-456 (2006) · doi:10.1038/nmat1644
[6] Wu, Y.; Lai, Y.; Zhang, ZQ, Elastic metamaterials with simultaneously negative effective shear modulus and mass density, Phys. Rev. Lett., 107, 10 (2011) · doi:10.1103/PhysRevLett.107.105506
[7] Patil, GU; Shedge, AB; Matlack, KH, 3D auxetic lattice materials for anomalous elastic wave polarization, Appl. Phys. Lett., 115, 9 (2019) · doi:10.1063/1.5116687
[8] Vila, J.; Pal, RK; Ruzzene, M., Observation of topological valley modes in an elastic hexagonal lattice, Phys. Rev. B, 96, 13 (2017) · doi:10.1103/PhysRevB.96.134307
[9] Hussein, MI; Leamy, MJ; Ruzzene, M., Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook, Appl. Mech. Rev., 66, 4, 040802 (2014) · doi:10.1115/1.4026911
[10] Porter, MA; Kevrekidis, PG; Daraio, C., Granular crystals: nonlinear dynamics meets materials engineering, Phys. Today, 68, 11, 44-50 (2015) · doi:10.1063/PT.3.2981
[11] Deng, B., Chen, L., Wei, D., Tournat, V., Bertoldi, K.: Pulse-driven robot: motion via solitary waves. Sci. Adv. 6(18), eaaz1166 (2020). doi:10.1126/sciadv.aaz1166
[12] Hussein, M.I., Biringen, S., Bilal, O.R., Kucala, A.: Flow stabilization by subsurface phonons. Proc. R. Soc. A 471(2177), 20140928 (2015). doi:10.1098/rspa.2014.0928
[13] Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, RV, A seismic metamaterial: the resonant metawedge, Sci. Rep., 6, 1, 27717 (2016) · doi:10.1038/srep27717
[14] Krödel, S.; Thomé, N.; Daraio, C., Wide band-gap seismic metastructures, Extreme Mech. Lett., 4, 111-117 (2015) · doi:10.1016/j.eml.2015.05.004
[15] Kim, E.; Kim, YHN; Yang, J., Nonlinear stress wave propagation in 3D woodpile elastic metamaterials, Int. J. Solids Struct., 58, 128-135 (2015) · doi:10.1016/j.ijsolstr.2014.12.024
[16] Truesdell, C., General and exact theory of waves in finite elastic strain, Arch. Ration. Mech. Anal., 8, 1, 263 (1961) · Zbl 0111.37703 · doi:10.1007/BF00277444
[17] Green, AE, A note on wave propagation in initially deformed bodies, J. Mech. Phys. Solids, 11, 2, 119-126 (1963) · doi:10.1016/0022-5096(63)90059-0
[18] Breazeale, MA; Thompson, DO, Finite-amplitude ultrasonic waves in aluminum, Appl. Phys. Lett., 3, 5, 77 (1963) · doi:10.1063/1.1753876
[19] Jones, GL; Kobett, DR, Interaction of elastic waves in an isotropic solid, J. Acoust. Soc. Am., 35, 1, 5 (1963) · doi:10.1121/1.1918405
[20] Gedroits, A.A., Krasil’nikov, V.A.: Finite-amplitude elastic waves in solids and deviations from Hooke’s law. Soviet Phys. JETP 16(5), 1122-1126(1963)
[21] Bhatnagar, P. L.: Nonlinear Waves in One-dimensional Dispersive Systems. Clarendon Press, Oxford (1979) · Zbl 0487.35001
[22] Ogden, R.W: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984) · Zbl 0541.73044
[23] Hamilton, M.F., Blackstock, D.T.: Nonlinear Acoustics. Academic Press, San Diego (1998)
[24] Samsonov A.M.: Nonlinear strain waves in elastic waveguides. In: Jeffrey A., Engelbrecht J. (eds)Nonlinear Waves in Solids. CISM Courses and Lectures (International Centre for Mechanical Sciences),vol. 341, pp. 349-382. Springer, Vienna (1994).doi:10.1007/978-3-7091-2444-4-6 · Zbl 0806.73018
[25] Deng, M., Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate, J. Appl. Phys., 85, 6, 3051 (1999) · doi:10.1063/1.369642
[26] Mayer, AP, Surface acoustic waves in nonlinear elastic media, Phys. Report., 256, 4-5, 236-237 (1995) · doi:10.1016/0370-1573(94)00088-K
[27] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979) · Zbl 0418.70001
[28] Theocharis, G., Boechler, N., Daraio, C.: Nonlinear phononic structures and metamaterials.In: Deymier, P.A. (ed) Acoustic Metamaterials and Phononic Crystals. Springer series in solid state sciences,vol. 173, pp. 217-251. Springer, Berlin, Heidelberg (2013).doi:10.1007/978-3-642-31232-8
[29] Chong, C.; Porter, MA; Kevrekidis, PG; Daraio, C., Nonlinear coherent structures in granular crystals, J. Phys. Condens. Matter, 29, 41, 413003 (2017) · doi:10.1088/1361-648X/aa7672
[30] Manktelow, K.L., Ruzzene, M., Leamy, M.J.: Wave propagation in nonlinear lattice materials. In: Phani, A.S., Hussein, M.I. (eds) Dynamics of Lattice Materials, pp.107-137. Wiley, Chichester (2017) · Zbl 1215.74039
[31] Deng, B.; Raney, JR; Bertoldi, K.; Tournat, V., Nonlinear waves in flexible mechanical metamaterials, J. Appl. Phys., 130, 4 (2021) · doi:10.1063/5.0050271
[32] Nassar, H.; Yousefzadeh, B.; Fleury, R.; Ruzzene, M.; Alu, A.; Daraio, C.; Norris, AN; Huang, G.; Haberman, MR, Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater., 5, 9, 667-685 (2020) · doi:10.1038/s41578-020-0206-0
[33] Wang, P.; Shim, J.; Bertoldi, K., Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals, Phys. Rev. B, 88, 1 (2013) · doi:10.1103/PhysRevB.88.014304
[34] Bertoldi, K.; Boyce, MC, Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations, Phys. Rev. B, 78, 18 (2008) · doi:10.1103/PhysRevB.78.184107
[35] Shim, J.; Wang, P.; Bertoldi, K., Harnessing instability-induced pattern transformation to design tunable phononic crystals, Int. J. Solids Struct., 58, 52-61 (2015) · doi:10.1016/j.ijsolstr.2014.12.018
[36] Pal, RK; Rimoli, J.; Ruzzene, M., Effect of large deformation pre-loads on the wave properties of hexagonal lattices, Smart Mater. Struct., 25, 5 (2016) · doi:10.1088/0964-1726/25/5/054010
[37] Meaud, J.; Che, K., Tuning elastic wave propagation in multistable architected materials, Int. J. Solids Struct., 122-123, 69-80 (2017) · doi:10.1016/j.ijsolstr.2017.05.042
[38] Chakraborty, G., Malik, A.K.: Dynamics of a weakly non-linear periodic chain. Int. J. Nonlinear Mech. 36(2), 375-389 (2001). doi:10.1016/S0020-7462(00)00024-X · Zbl 1345.74059
[39] Narisetti, RK; Leamy, MJ; Ruzzene, M., A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures, J. Vib. Acoust., 132, 3, 031001 (2010) · doi:10.1115/1.4000775
[40] Narisetti, RK; Ruzzene, M.; Leamy, MJ, A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices, J. Vib. Acoust., 133, 6, 061020 (2011) · doi:10.1115/1.4004661
[41] Bae, MH; Oh, JH, Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials, J. Mech. Phys. Solids, 139 (2020) · doi:10.1016/j.jmps.2020.103930
[42] Manktelow, K.; Leamy, MJ; Ruzzene, M., Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain, Nonlinear Dyn., 63, 1, 193-203 (2011) · Zbl 1215.74039 · doi:10.1007/s11071-010-9796-1
[43] Frandsen, NMM; Jensen, JS, Modal interaction and higher harmonic generation in a weakly nonlinear, periodic mass-spring chain, Wave Motion, 68, 149-161 (2017) · Zbl 1524.74282 · doi:10.1016/j.wavemoti.2016.09.002
[44] Manktelow, KL; Leamy, MJ; Ruzzene, M., Weakly nonlinear wave interactions in multi-degree of freedom periodic structures, Wave Motion, 51, 6, 886-904 (2014) · Zbl 1456.74028 · doi:10.1016/j.wavemoti.2014.03.003
[45] Jiao, W.; Gonella, S., Wavenumber-space band clipping in nonlinear periodic structures, Proc. R. Soc. A, 477, 2251, 20210052 (2021) · doi:10.1098/RSPA.2021.0052
[46] Lazarov, BS; Jensen, JS, Low-frequency band gaps in chains with attached non-linear oscillators, Int. J. Non-Linear Mech., 42, 10, 1186-1193 (2007) · doi:10.1016/j.ijnonlinmec.2007.09.007
[47] Manimala, JM; Sun, CT, Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators, J. Acoust. Soc. Am., 139, 6, 3365 (2016) · doi:10.1121/1.4949543
[48] Zhou, WJ; Li, XP; Wang, YS; Chen, WQ; Huang, GL, Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials, J. Sound Vib., 413, 250-269 (2018) · doi:10.1016/j.jsv.2017.10.023
[49] Bukhari, M., Farzaneh Joubaneh, E., Barry, O.: Spectro-spatial wave features in nonlinear metamaterials: theoretical and computational studies. J. Vib. Acoust. 143(3), 031010(2021). doi:10.1115/1.4048557
[50] Fang, X.; Wen, J.; Bonello, B.; Yin, J.; Yu, D., Wave propagation in one-dimensional nonlinear acoustic metamaterials, New J. Phys., 19, 5 (2017) · Zbl 1514.74054 · doi:10.1088/1367-2630/aa6d49
[51] Fronk, M.D., Leamy, M.J.: Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. J. Vib. Acoust. 139(5), 051003 (2017). doi:10.1115/1.4036501
[52] Fronk, MD; Leamy, MJ, Direction-dependent invariant waveforms and stability in two-dimensional, weakly nonlinear lattices, J. Sound Vib., 447, 137-154 (2019) · doi:10.1016/j.jsv.2019.01.022
[53] Fronk, MD; Leamy, MJ, Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials, Phys. Rev. E, 100, 3, 32213 (2019) · doi:10.1103/PhysRevE.100.032213
[54] Fang, X.; Wen, J.; Yu, D.; Yin, J., Bridging-coupling band gaps in nonlinear acoustic metamaterials, Phys. Rev. Appl., 10, 5 (2018) · doi:10.1103/PhysRevApplied.10.054049
[55] Panigrahi, SR; Feeny, BF; Diaz, AR, Second-order perturbation analysis of low-amplitude traveling waves in a periodic chain with quadratic and cubic nonlinearity, Wave Motion, 69, 1-15 (2017) · Zbl 1524.35548 · doi:10.1016/j.wavemoti.2016.11.004
[56] Swinteck, N.Z., Muralidharan, K., Deymier, P.A.: Phonon scattering in one-dimensional anharmonic crystals and superlattices: analytical and numerical study. J. Vib. Acoust. 135, 4 041016 (2013). doi:10.1115/1.4023824
[57] Narisetti, RK; Ruzzene, M.; Leamy, MJ, Study of wave propagation in strongly nonlinear periodic lattices using a harmonic balance approach, Wave Motion, 49, 2, 394-410 (2012) · Zbl 1360.74092 · doi:10.1016/j.wavemoti.2011.12.005
[58] Manktelow, K.; Leamy, MJ; Ruzzene, M., Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals, Wave Motion, 50, 3, 494-508 (2013) · Zbl 1454.78025 · doi:10.1016/j.wavemoti.2012.12.009
[59] Manktelow, K.; Narisetti, RK; Leamy, MJ; Ruzzene, M., Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures, Mech. Syst. Signal Process., 39, 1-2, 32-46 (2013) · doi:10.1016/j.ymssp.2012.04.015
[60] Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Topology design and optimization of nonlinear periodic materials. J. Mech. Phys. Solids 61(12), 2433-2453 (2013). doi:10.1016/j.jmps.2013.07.009 · Zbl 1454.78025
[61] Silva, PB; Leamy, MJ; Geers, MG; Kouznetsova, VG, Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance, Phys. Rev. E, 99, 6 (2019) · doi:10.1103/PhysRevE.99.063003
[62] Schneider, D.; Gomopoulos, N.; Koh, CY; Papadopoulos, P.; Kremer, F.; Thomas, EL; Fytas, G., Nonlinear control of high-frequency phonons in spider silk, Nat. Mater., 15, 10, 1079-1083 (2016) · doi:10.1038/nmat4697
[63] Khajehtourian, R.; Hussein, MI, Dispersion characteristics of a nonlinear elastic metamaterial, AIP Adv., 4, 12 (2014) · doi:10.1063/1.4905051
[64] Hussein, M.I., Khajehtourian, R.: Nonlinear Bloch waves and balance between hardening and softening dispersion. Proc. R. Soc. 474(2217), 20180173 (2018). doi:10.1098/rspa.2018.0173 · Zbl 1407.74045
[65] Reda, H.; Karathanasopoulos, N.; Ganghoffer, JF; Lakiss, H., Wave propagation characteristics of periodic structures accounting for the effect of their higher order inner material kinematics, J. Sound Vib., 431, 265-275 (2018) · doi:10.1016/j.jsv.2018.06.006
[66] Karathanasopoulos, N.; Reda, H.; Ganghoffer, JF, The role of non-slender inner structural designs on the linear and non-linear wave propagation attributes of periodic, two-dimensional architectured materials, J. Sound Vib., 455, 312-323 (2019) · doi:10.1016/j.jsv.2019.05.011
[67] Manktelow, K.L., Leamy, M.J., Ruzzene, M.: Analysis and experimental estimation of nonlinear dispersion in a periodic string. J. Vib. Acoust. 136(3), 031016 (2014). doi:10.1115/1.4027137 · Zbl 1456.74028
[68] Zega, V.; Silva, PB; Geers, MGD; Kouznetsova, VG, Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial, Sci. Rep., 10, 1, 12041 (2020) · doi:10.1038/s41598-020-68894-3
[69] Reda, H.; Rahali, Y.; Ganghoffer, JF; Lakiss, H., Wave propagation analysis in 2D nonlinear hexagonal periodic networks based on second order gradient nonlinear constitutive models, Int. J. Nonlinear Mech., 87, 85-96 (2016) · doi:10.1016/j.ijnonlinmec.2016.10.002
[70] Motaei, F.; Bahrami, A., Nonlinear elastic switch based on solid-solid phononic crystals, J. Mater. Sci., 55, 21, 8983-8991 (2020) · doi:10.1007/s10853-020-04705-4
[71] Kim, S., Bunyan, J., Ferrari, P.F., Kanj, A., Vakakis, A.F., van der Zande, A.M., Tawfick, S.: Buckling-mediated phase transitions in nano-electromechanical phononic waveguides. Nano Lett. 21(15), 6416-6424 (2021). doi:10.1021/ACS.NANOLETT.1C00764
[72] Xia, Y.; Ruzzene, M.; Erturk, A., Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments, Appl. Phys. Lett., 114, 9 (2019) · doi:10.1063/1.5066329
[73] Xia, Y.; Ruzzene, M.; Erturk, A., Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam, Nonlinear Dyn., 102, 3, 1285-1296 (2020) · doi:10.1007/S11071-020-06008-4
[74] Meaud, J., Nonlinear wave propagation and dynamic reconfiguration in two-dimensional lattices with bistable elements, J. Sound Vib., 473 (2020) · doi:10.1016/j.jsv.2020.115239
[75] Wang, K.; Zhou, J.; Xu, D.; Ouyang, H., Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity, Mech. Syst. Signal Process., 124, 664-678 (2019) · doi:10.1016/j.ymssp.2019.02.008
[76] Boechler, N.; Eliason, JK; Kumar, A.; Maznev, AA; Nelson, KA; Fang, N., Interaction of a contact resonance of microspheres with surface acoustic waves, Phys. Rev. Lett., 111, 3 (2013) · doi:10.1103/PhysRevLett.111.036103
[77] Cabaret, J.; Tournat, V.; Béquin, P., Amplitude-dependent phononic processes in a diatomic granular chain in the weakly nonlinear regime, Phys. Rev. E, 86, 4 (2012) · doi:10.1103/PhysRevE.86.041305
[78] Fang, X.; Wen, J.; Bonello, B.; Yin, J.; Yu, D., Ultra-low and ultra-broad-band nonlinear acoustic metamaterials, Nat. Commun., 8, 1, 1288 (2017) · doi:10.1038/s41467-017-00671-9
[79] Fang, X.; Wen, J.; Benisty, H.; Yu, D., Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect, Phys. Rev. B, 101, 10 (2020) · doi:10.1103/PhysRevB.101.104304
[80] Banerjee, A.; Calius, EP; Das, R., Impact based wideband nonlinear resonating metamaterial chain, Int. J. Non-Linear Mech., 103, 138-144 (2018) · doi:10.1016/j.ijnonlinmec.2018.04.011
[81] Banerjee, A.; Calius, EP; Das, R., An impact based mass-in-mass unit as a building block of wideband nonlinear resonating metamaterial, Int. J. Non-Linear Mech., 101, 8-15 (2018) · doi:10.1016/j.ijnonlinmec.2018.01.013
[82] Sorokin V.S., Thomsen J. J.: Effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam. Proc. R. Soc. A. 472(2186), 20150751 (2016). doi:10.1098/rspa.2015.0751
[83] Jiao, W.; Gonella, S., Doubly nonlinear waveguides with self-switching functionality selection capabilities, Phys. Rev. E, 99, 4, 042206 (2019) · doi:10.1103/PhysRevE.99.042206
[84] Bilal, OR; Foehr, A.; Daraio, C., Reprogrammable phononic metasurfaces, Adv. Mater., 29, 39, 1700628 (2017) · doi:10.1002/adma.201700628
[85] Ganesh, R.; Gonella, S., Nonlinear waves in lattice materials: adaptively augmented directivity and functionality enhancement by modal mixing, J. Mech. Phys. Solids, 99, 272-288 (2017) · doi:10.1016/j.jmps.2016.11.001
[86] Fiore, S.; Finocchio, G.; Zivieri, R.; Chiappini, M.; Garescì, F., Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems, Appl. Phys. Lett., 117, 12 (2020) · doi:10.1063/5.0020486
[87] Li, Z.N., Wang, Y.Z., Wang, Y.S.: Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses. Int. J. Solids Struct. 182-183, 218-235 (2020). doi:10.1016/j.ijsolstr.2019.08.020
[88] Ganesh, R.; Gonella, S., Experimental evidence of directivity-enhancing mechanisms in nonlinear lattices, Appl. Phys. Lett., 110, 8 (2017) · doi:10.1063/1.4976805
[89] Jiao, W.; Gonella, S., Mechanics of inter-modal tunneling in nonlinear waveguides, J. Mech. Phys. Solids, 111, 1-17 (2018) · Zbl 1441.74099 · doi:10.1016/j.jmps.2017.10.008
[90] Jiao, W.; Gonella, S., Intermodal and subwavelength energy trapping in nonlinear metamaterial waveguides, Phys. Rev. Appl., 10, 2 (2018) · doi:10.1103/PhysRevApplied.10.024006
[91] Khajehtourian, R., Hussein, M.I.: Nonlinear dispersion relation predicts harmonic generation in wave motion. arxiv arXiv:1905.02523 (2019)
[92] Amendola, A.; Krushynska, A.; Daraio, C.; Pugno, NM; Fraternali, F., Tuning frequency band gaps of tensegrity mass-spring chains with local and global prestress, Int. J. Solids Struct., 155, 47-56 (2018) · doi:10.1016/j.ijsolstr.2018.07.002
[93] Guo, X., Gusev, V.E., Bertoldi, K., Tournat, V.: Manipulating acoustic wave reflection by a nonlinear elastic metasurface. J. Appl. Phys. 123(12), 124901(2018). doi:10.1063/1.5015952
[94] Guo, X.; Gusev, VE; Tournat, V.; Deng, B.; Bertoldi, K., Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface, Phys. Rev. E, 99, 5 (2019) · doi:10.1103/PhysRevE.99.052209
[95] Bonanomi, L.; Theocharis, G.; Daraio, C., Wave propagation in granular chains with local resonances, Phys. Rev. E, 91, 3 (2015) · doi:10.1103/PhysRevE.91.033208
[96] Sánchez-Morcillo, VJ; Pérez-Arjona, I.; Romero-García, V.; Tournat, V.; Gusev, VE, Second-harmonic generation for dispersive elastic waves in a discrete granular chain, Phys. Rev. E, 88, 4 (2013) · doi:10.1103/PhysRevE.88.043203
[97] Allein, F.; Tournat, V.; Gusev, V.; Theocharis, G., Linear and nonlinear elastic waves in magnetogranular chains, Phys. Rev. Appl., 13, 2 (2020) · doi:10.1103/PhysRevApplied.13.024023
[98] Ganesh, R.; Gonella, S., From modal mixing to tunable functional switches in nonlinear phononic crystals, Phys. Rev. Lett., 114, 5 (2015) · doi:10.1103/PhysRevLett.114.054302
[99] Wallen, SP; Boechler, N., Shear to longitudinal mode conversion via second harmonic generation in a two-dimensional microscale granular crystal, Wave Motion, 68, 22-30 (2017) · Zbl 1524.74093 · doi:10.1016/j.wavemoti.2016.08.009
[100] Biwa, S.; Ishii, Y., Second-harmonic generation in an infinite layered structure with nonlinear spring-type interfaces, Wave Motion, 63, 55-67 (2016) · Zbl 1469.74007 · doi:10.1016/j.wavemoti.2016.01.004
[101] Ishii, Y.; Biwa, S.; Adachi, T., Second-harmonic generation in a multilayered structure with nonlinear spring-type interfaces embedded between two semi-infinite media, Wave Motion, 76, 28-41 (2018) · Zbl 1524.35619 · doi:10.1016/j.wavemoti.2017.07.009
[102] Ishii, Y.; Biwa, S.; Adachi, T., Second-harmonic generation of two-dimensional elastic wave propagation in an infinite layered structure with nonlinear spring-type interfaces, Wave Motion, 96 (2020) · Zbl 1524.74050 · doi:10.1016/j.wavemoti.2020.102569
[103] Bellis, C.; Lombard, B.; Touboul, M.; Assier, R., Effective dynamics for low-amplitude transient elastic waves in a 1D periodic array of non-linear interfaces, J. Mech. Phys. Solids, 149 (2021) · doi:10.1016/j.jmps.2021.104321
[104] Grinberg, I.; Matlack, KH, Nonlinear elastic wave propagation in a phononic material with periodic solid-solid contact interface, Wave Motion, 93 (2020) · Zbl 1524.74283 · doi:10.1016/j.wavemoti.2019.102466
[105] Patil, GU; Matlack, KH, Wave self-interactions in continuum phononic materials with periodic contact nonlinearity, Wave Motion, 105 (2021) · Zbl 1524.74288 · doi:10.1016/j.wavemoti.2021.102763
[106] Mehrem, A.; Jiménez, N.; Salmerón-Contreras, LJ; García-Andrés, X.; García-Raffi, LM; Picó, R.; Sánchez-Morcillo, VJ, Nonlinear dispersive waves in repulsive lattices, Phys. Rev. E, 96, 1, 12208 (2017) · doi:10.1103/PhysRevE.96.012208
[107] Jiao, W.; Gonella, S., Nonlinear harmonic generation in two-dimensional lattices of repulsive magnets, Phys. Rev. E, 103, 1 (2021) · doi:10.1103/PhysRevE.103.012213
[108] Konarski, SG; Haberman, MR; Hamilton, MF, Frequency-dependent behavior of media containing pre-strained nonlinear inclusions: application to nonlinear acoustic metamaterials, J. Acoust. Soc. Am., 144, 5, 3022 (2018) · doi:10.1121/1.5078529
[109] Panigrahi, SR; Feeny, BF; Diaz, AR, Wave-wave interactions in a periodic chain with quadratic nonlinearity, Wave Motion, 69, 65-80 (2017) · Zbl 1453.34016 · doi:10.1016/j.wavemoti.2016.11.008
[110] Rothos, VM; Vakakis, AF, Dynamic interactions of traveling waves propagating in a linear chain with an local essentially nonlinear attachment, Wave Motion, 46, 3, 174-188 (2009) · Zbl 1231.74251 · doi:10.1016/j.wavemoti.2008.10.004
[111] Lydon, J.; Theocharis, G.; Daraio, C., Nonlinear resonances and energy transfer in finite granular chains, Phys. Rev. E, 91, 2 (2015) · doi:10.1103/PhysRevE.91.023208
[112] Ganesh, R.; Gonella, S., Spectro-spatial wave features as detectors and classifiers of nonlinearity in periodic chains, Wave Motion, 50, 4, 821-835 (2013) · Zbl 1454.74099 · doi:10.1016/j.wavemoti.2013.02.011
[113] Ganesh, R.; Gonella, S., Invariants of nonlinearity in the phononic characteristics of granular chains, Phys. Rev. E, 90, 2 (2014) · doi:10.1103/PhysRevE.90.023205
[114] Kurosu, M.; Hatanaka, D.; Yamaguchi, H., Mechanical Kerr nonlinearity of wave propagation in an on-chip nanoelectromechanical waveguide, Phys. Rev. Appl., 13, 1, 14056 (2020) · doi:10.1103/PhysRevApplied.13.014056
[115] Devaux, T.; Tournat, V.; Richoux, O.; Pagneux, V., Asymmetric acoustic propagation of wave packets via the self-demodulation effect, Phys. Rev. Lett., 115, 23 (2015) · doi:10.1103/PhysRevLett.115.234301
[116] Merkel, A.; Tournat, V.; Gusev, V., Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity, Phys. Rev. E, 90, 2 (2014) · doi:10.1103/PhysRevE.90.023206
[117] Zhang, Q.; Umnova, O.; Venegas, R., Nonlinear dynamics of coupled transverse-rotational waves in granular chains, Phys. Rev. E, 100, 6 (2019) · doi:10.1103/PhysRevE.100.062206
[118] Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5(1), 5311(2014). doi:10.1038/ncomms6311
[119] Frazier, MJ; Kochmann, DM, Band gap transmission in periodic bistable mechanical systems, J. Sound Vib., 388, 315-326 (2017) · doi:10.1016/j.jsv.2016.10.041
[120] Wu, Z.; Zheng, Y.; Wang, KW, Metastable modular metastructures for on-demand reconfiguration of band structures and nonreciprocal wave propagation, Phys. Rev. E, 97, 2 (2018) · doi:10.1103/PhysRevE.97.022209
[121] Wu, Z.; Wang, KW, On the wave propagation analysis and supratransmission prediction of a metastable modular metastructure for non-reciprocal energy transmission, J. Sound Vib., 458, 389-406 (2019) · doi:10.1016/j.jsv.2019.06.032
[122] Yousefzadeh, B.; Phani, AS, Energy transmission in finite dissipative nonlinear periodic structures from excitation within a stop band, J. Sound Vib., 354, 180-195 (2015) · doi:10.1016/j.jsv.2015.06.002
[123] Yousefzadeh, B.; Phani, AS, Supratransmission in a disordered nonlinear periodic structure, J. Sound Vib., 380, 242-266 (2016) · doi:10.1016/j.jsv.2016.06.001
[124] Hoogeboom, C.; Man, Y.; Boechler, N.; Theocharis, G.; Kevrekidis, PG; Kevrekidis, IG; Daraio, C., Hysteresis loops and multi-stability: from periodic orbits to chaotic dynamics (and back) in diatomic granular crystals, EPL (Europhysics Letters), 101, 4, 44003 (2013) · doi:10.1209/0295-5075/101/44003
[125] Boechler, N.; Theocharis, G.; Daraio, C., Bifurcation-based acoustic switching and rectification, Nat. Mater., 10, 9, 665-668 (2011) · doi:10.1038/nmat3072
[126] Vakakis, AF; Al-Shudeifat, MA; Hasan, MA, Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment, Meccanica, 49, 10, 2375-2397 (2014) · Zbl 1299.70027 · doi:10.1007/s11012-014-0008-9
[127] Vakakis, A.F.: Passive nonlinear targeted energy transfer. Philos. Trans. R. Soc. A 376(2127), 20170132 (2018). doi:10.1098/rsta.2017.0132 · Zbl 1404.76243
[128] Moore, KJ; Bunyan, J.; Tawfick, S.; Gendelman, OV; Li, S.; Leamy, M.; Vakakis, AF, Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy, Phys. Rev. E, 97, 1 (2018) · doi:10.1103/PhysRevE.97.012219
[129] Bunyan, J.; Moore, KJ; Mojahed, A.; Fronk, MD; Leamy, M.; Tawfick, S.; Vakakis, AF, Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: experimental study, Phys. Rev. E, 97, 5 (2018) · doi:10.1103/PhysRevE.97.052211
[130] Fronk, M.D., Tawfick, S., Daraio, C., Li, S., Vakakis, A., Leamy, M.J.: Acoustic non-reciprocity in lattices with nonlinearity, internal hierarchy, and asymmetry: computational study. J. Vib. Acoust. 141(5), 051011(2019). doi:10.1115/1.4043783
[131] Wang, C.; Kanj, A.; Mojahed, A.; Tawfick, S.; Vakakis, A., Wave redirection, localization, and non-reciprocity in a dissipative nonlinear lattice by macroscopic Landau-Zener tunneling: Theoretical results, J. Appl. Phys., 129, 9 (2021) · doi:10.1063/5.0042275
[132] Kanj, A.; Wang, C.; Mojahed, A.; Vakakis, A.; Tawfick, S., Wave redirection, localization, and non-reciprocity in a dissipative nonlinear lattice by macroscopic Landau-Zener tunneling: Experimental results, AIP Adv., 11, 6 (2021) · doi:10.1063/5.0047806
[133] Zhang, Z.; Koroleva, I.; Manevitch, LI; Bergman, LA; Vakakis, AF, Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice, Phys. Rev. E, 94, 3 (2016) · doi:10.1103/PhysRevE.94.032214
[134] Kulkarni, PP; Manimala, JM, Realizing passive direction-bias for mechanical wave propagation using a nonlinear metamaterial, Acta Mech., 230, 7, 2521-2537 (2019) · doi:10.1007/s00707-019-02415-w
[135] Darabi, A.; Fang, L.; Mojahed, A.; Fronk, MD; Vakakis, AF; Leamy, MJ, Broadband passive nonlinear acoustic diode, Phys. Rev. B, 99, 21 (2019) · doi:10.1103/PhysRevB.99.214305
[136] Mojahed, A.; Bunyan, J.; Tawfick, S.; Vakakis, AF, Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry, Phys. Rev. Appl., 12, 3 (2019) · doi:10.1103/PhysRevApplied.12.034033
[137] Nadkarni, N.; Arrieta, AF; Chong, C.; Kochmann, DM; Daraio, C., Unidirectional transition waves in bistable lattices, Phys. Rev. Lett., 116, 24 (2016) · doi:10.1103/PhysRevLett.116.244501
[138] Raney, JR; Nadkarni, N.; Daraio, C.; Kochmann, DM; Lewis, JA; Bertoldi, K., Stable propagation of mechanical signals in soft media using stored elastic energy, Proc. Natl. Acad. Sci., 113, 35, 9722-9727 (2016) · doi:10.1073/pnas.1604838113
[139] Hwang, M.., Arrieta, A..F..: Solitary waves in bistable lattices with stiffness grading: augmenting propagation control. Phys. Rev. E 98(4), doi:10.1103/PhysRevE.98.042205
[140] Librandi, G., Tubaldi, E., Bertoldi, K.: Programming nonreciprocity and reversibility in multistable mechanical metamaterials. Nat. Commun. 12(1), 3454 (2021). doi:10.1038/s41467-021-23690-z
[141] Katz, S.; Givli, S., Solitary waves in a bistable lattice, Extreme Mech. Lett., 22, 106-111 (2018) · doi:10.1016/j.eml.2018.06.003
[142] Deng, B.; Wang, P.; He, Q.; Tournat, V.; Bertoldi, K., Metamaterials with amplitude gaps for elastic solitons, Nat. Commun., 9, 1, 3410 (2018) · doi:10.1038/s41467-018-05908-9
[143] Leveque, RJ; Yong, DH, Solitary waves in layered nonlinear media, SIAM J. Appl. Math., 63, 5, 1539-1560 (2003) · Zbl 1075.74047 · doi:10.1137/S0036139902408151
[144] Andrianov, I.V., Danishevs’kyy, V.V., Ryzhkov, O.I., Weichert, D.: Dynamic homogenization and wave propagation in a nonlinear 1D composite material. Wave Motion 50(2), 271 (2013). doi:10.1016/j.wavemoti.2012.08.013 · Zbl 1360.74129
[145] Katz, S.; Givli, S., Solitary waves in a nonintegrable chain with double-well potentials, Phys. Rev. E, 100, 3, 032209 (2019) · doi:10.1103/PhysRevE.100.032209
[146] Fraternali, F.; Senatore, L.; Daraio, C., Solitary waves on tensegrity lattices, J. Mech. Phys. Solids, 60, 6, 1137-1144 (2012) · doi:10.1016/j.jmps.2012.02.007
[147] Fraternali, F.; Carpentieri, G.; Amendola, A.; Skelton, RE; Nesterenko, VF, Multiscale tunability of solitary wave dynamics in tensegrity metamaterials, Appl. Phys. Lett., 105, 20 (2014) · doi:10.1063/1.4902071
[148] Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733-743 (1983). doi:10.1007/BF00905892
[149] Lazaridi, AN; Nesterenko, VF, Observation of a new type of solitary waves in a one-dimensional granular medium, J. Appl. Mech. Tech. Phys., 26, 3, 405-408 (1985) · doi:10.1007/BF00910379
[150] Nesterenko, V.F., Lazaridi, A.N., Sibiryakov, E.B.: The decay of soliton at the contact of two “acoustic vacuums.” J. Appl. Mech. Tech. Phys. 36(2), 166-168 (1995). doi:10.1007/BF02369645
[151] Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56(5), 6104 (1997). doi:10.1103/PhysRevE.56.6104
[152] Nesterenko, VF; Daraio, C.; Herbold, EB; Jin, S., Anomalous wave reflection at the interface of two strongly nonlinear granular media, Phys. Rev. Lett., 95, 15 (2005) · doi:10.1103/PhysRevLett.95.158702
[153] Daraio, C.; Nesterenko, VF; Herbold, EB; Jin, S., Strongly nonlinear waves in a chain of Teflon beads, Phys. Rev. E, 72, 1 (2005) · doi:10.1103/PhysRevE.72.016603
[154] Daraio, C.; Nesterenko, VF; Herbold, EB; Jin, S., Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals, Phys. Rev. E, 73, 2 (2006) · doi:10.1103/PhysRevE.73.026610
[155] Daraio, C.; Nesterenko, VF, Strongly nonlinear wave dynamics in a chain of polymer coated beads, Phys. Rev. E, 73, 2 (2006) · doi:10.1103/PhysRevE.73.026612
[156] Santibanez, F.; Munoz, R.; Caussarieu, A.; Job, S.; Melo, F., Experimental evidence of solitary wave interaction in Hertzian chains, Phys. Rev. E, 84, 2 (2011) · doi:10.1103/PhysRevE.84.026604
[157] Leonard, A.; Ponson, L.; Daraio, C., Wave mitigation in ordered networks of granular chains, J. Mech. Phys. Solids, 73, 103-117 (2014) · doi:10.1016/j.jmps.2014.08.004
[158] Daraio, C.; Ngo, D.; Nesterenko, VF; Fraternali, F., Highly nonlinear pulse splitting and recombination in a two-dimensional granular network, Phys. Rev. E, 82, 3 (2010) · doi:10.1103/PhysRevE.82.036603
[159] Kim, E.; Li, F.; Chong, C.; Theocharis, G.; Yang, J.; Kevrekidis, PG, Highly nonlinear wave propagation in elastic woodpile periodic structures, Phys. Rev. Lett., 114, 11 (2015) · doi:10.1103/PhysRevLett.114.118002
[160] Awasthi, AP; Smith, KJ; Geubelle, PH; Lambros, J., Propagation of solitary waves in 2D granular media: a numerical study, Mech. Mater., 54, 100-112 (2012) · doi:10.1016/j.mechmat.2012.07.005
[161] Lydon, J.; Jayaprakash, KR; Ngo, D.; Starosvetsky, Y.; Vakakis, AF; Daraio, C., Frequency bands of strongly nonlinear homogeneous granular systems, Phys. Rev. E, 88, 1 (2013) · doi:10.1103/PhysRevE.88.012206
[162] Herbold, EB; Nesterenko, VF, Solitary and shock waves in discrete strongly nonlinear double power-law materials, Appl. Phys. Lett., 90, 26 (2007) · doi:10.1063/1.2751592
[163] Molerón, M.; Leonard, A.; Daraio, C., Solitary waves in a chain of repelling magnets, J. Appl. Phys., 115, 18 (2014) · doi:10.1063/1.4872252
[164] Nadkarni, N.; Daraio, C.; Kochmann, DM, Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation, Phys. Rev. E, 90, 2 (2014) · doi:10.1103/PhysRevE.90.023204
[165] Mojahed, A.; Gendelman, OV; Vakakis, AF, Breather arrest, localization, and acoustic non-reciprocity in dissipative nonlinear lattices, J. Acoust. Soc. Am., 146, 1, 826 (2019) · doi:10.1121/1.5114915
[166] Hwang, M.; Arrieta, AF, Input-independent energy harvesting in bistable lattices from transition waves, Sci. Rep., 8, 1, 3630 (2018) · doi:10.1038/s41598-018-22003-7
[167] Boechler, N.; Theocharis, G.; Job, S.; Kevrekidis, PG; Porter, MA; Daraio, C., Discrete breathers in one-dimensional diatomic granular crystals, Phys. Rev. Lett., 104, 24 (2010) · doi:10.1103/PhysRevLett.104.244302
[168] Theocharis, G.; Boechler, N.; Kevrekidis, PG; Job, S.; Porter, MA; Daraio, C., Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals, Phys. Rev. E, 82, 5 (2010) · doi:10.1103/PhysRevE.82.056604
[169] Chong, C.; Kevrekidis, PG; Theocharis, G.; Daraio, C., Dark breathers in granular crystals, Phys. Rev. E, 87, 4 (2013) · doi:10.1103/PhysRevE.87.042202
[170] Wallen, SP; Lee, J.; Mei, D.; Chong, C.; Kevrekidis, PG; Boechler, N., Discrete breathers in a mass-in-mass chain with Hertzian local resonators, Phys. Rev. E, 95, 2 (2017) · doi:10.1103/PhysRevE.95.022904
[171] Browning, AP; Woodhouse, FG; Simpson, MJ, Reversible signal transmission in an active mechanical metamaterial, Proc. R. Soc. A, 475, 2227, 20190146 (2019) · Zbl 1472.74163 · doi:10.1098/rspa.2019.0146
[172] Ramakrishnan, V.; Frazier, MJ, Transition waves in multi-stable metamaterials with space-time modulated potentials, Appl. Phys. Lett., 117, 15 (2020) · doi:10.1063/5.0023472
[173] Deng, B.; Wang, P.; Tournat, V.; Bertoldi, K., Nonlinear transition waves in free-standing bistable chains, J. Mech. Phys. Solids, 136 (2020) · doi:10.1016/j.jmps.2019.07.004
[174] Yasuda, H.; Korpas, LM; Raney, JR, Transition waves and formation of domain walls in multistable mechanical metamaterials, Phys. Rev. Appl., 13, 5 (2020) · doi:10.1103/PhysRevApplied.13.054067
[175] Korpas, LM; Yin, R.; Yasuda, H.; Raney, JR, Temperature-responsive multistable metamaterials, ACS Appl. Mater. Interfaces, 13, 26, 31163-31170 (2021) · doi:10.1021/acsami.1c07327
[176] Jin, L.; Khajehtourian, R.; Mueller, J.; Rafsanjani, A.; Tournat, V.; Bertoldi, K.; Kochmann, DM, Guided transition waves in multistable mechanical metamaterials, Proc. Natl. Acad. Sci., 117, 5, 2319-2325 (2020) · Zbl 1456.74139 · doi:10.1073/pnas.1913228117
[177] Zareei, A.; Deng, B.; Bertoldi, K., Harnessing transition waves to realize deployable structures, Proc. Natl. Acad. Sci., 117, 8, 4015-4020 (2020) · doi:10.1073/pnas.1917887117
[178] Vasios, N.; Deng, B.; Gorissen, B.; Bertoldi, K., Universally bistable shells with nonzero Gaussian curvature for two-way transition waves, Nat. Commun., 12, 1, 695 (2021) · doi:10.1038/s41467-020-20698-9
[179] Khajehtourian, R.; Kochmann, DM, Phase transformations in substrate-free dissipative multistable metamaterials, Extreme Mech. Lett., 37 (2020) · doi:10.1016/J.EML.2020.100700
[180] Khajehtourian, R.; Kochmann, DM, A continuum description of substrate-free dissipative reconfigurable metamaterials, J. Mech. Phys. Solids, 147 (2021) · doi:10.1016/J.JMPS.2020.104217
[181] Khajehtourian, R., Kochmann, D.M.: Soft adaptive mechanical metamaterials. Front. Robot. AI 8, 673478 (2021). doi:10.3389/FROBT.2021.673478
[182] Ziv, R.; Shmuel, G., Observation of vector solitary waves in soft laminates using a finite-volume method, Int. J. Non-Linear Mech., 124 (2020) · doi:10.1016/j.ijnonlinmec.2020.103502
[183] Ziv, R.; Shmuel, G., Oscillating vector solitary waves in soft laminates, J. Mech. Phys. Solids, 143 (2020) · doi:10.1016/j.jmps.2020.104058
[184] Deng, B., Raney, J.R., Tournat, V., Bertoldi, K.: Elastic vector solitons in soft architected materials. Phys. Rev. Lett. 118(20), 204102 (2017). doi:10.1103/PhysRevLett.118.204102
[185] Deng, B.; Tournat, V.; Bertoldi, K., Effect of predeformation on the propagation of vector solitons in flexible mechanical metamaterials, Phys. Rev. E, 98, 5 (2018) · doi:10.1103/PhysRevE.98.053001
[186] Deng, B.; Tournat, V.; Wang, P.; Bertoldi, K., Anomalous collisions of elastic vector solitons in mechanical metamaterials, Phys. Rev. Lett., 122, 4 (2019) · doi:10.1103/PhysRevLett.122.044101
[187] Deng, B., Mo, C., Tournat, V., Bertoldi, K., Raney, J.R.: Focusing and mode separation of elastic vector solitons in a 2D soft mechanical metamaterial. Phys. Rev. Lett. 123(2), 024101 (2019). doi:10.1103/PhysRevLett.123.024101
[188] Berezovski, A.; Berezovski, M.; Engelbrecht, J., Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media, Mater. Sci. Eng. A, 418, 1-2, 364-369 (2006) · doi:10.1016/j.msea.2005.12.005
[189] Herbold, EB; Nesterenko, VF, Shock wave structure in a strongly nonlinear lattice with viscous dissipation, Phys. Rev. E, 75, 2 (2007) · doi:10.1103/PhysRevE.75.021304
[190] Molinari, A.; Daraio, C., Stationary shocks in periodic highly nonlinear granular chains, Phys. Rev. E, 80, 5 (2009) · doi:10.1103/PhysRevE.80.056602
[191] Gómez, LR; Turner, AM; Vitelli, V., Uniform shock waves in disordered granular matter, Phys. Rev. E, 86, 4, 041302 (2012) · doi:10.1103/PhysRevE.86.041302
[192] Herbold, EB; Nesterenko, VF, Propagation of rarefaction pulses in discrete materials with strain-softening behavior, Phys. Rev. Lett., 110, 14 (2013) · doi:10.1103/PhysRevLett.110.144101
[193] Yasuda, H.; Chong, C.; Yang, J.; Kevrekidis, PG, Emergence of dispersive shocks and rarefaction waves in power-law contact models, Phys. Rev. E, 95, 6 (2017) · doi:10.1103/PhysRevE.95.062216
[194] Kim, H.; Kim, E.; Chong, C.; Kevrekidis, PG; Yang, J., Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains, Phys. Rev. Lett., 120, 19 (2018) · doi:10.1103/PhysRevLett.120.194101
[195] Deng, B.; Zhang, Y.; He, Q.; Tournat, V.; Wang, P.; Bertoldi, K., Propagation of elastic solitons in chains of pre-deformed beams, New J. Phys., 21, 7 (2019) · doi:10.1088/1367-2630/AB2810
[196] Yasuda, H.; Chong, C.; Charalampidis, EG; Kevrekidis, PG; Yang, J., Formation of rarefaction waves in origami-based metamaterials, Phys. Rev. E, 93, 4 (2016) · doi:10.1103/PhysRevE.93.043004
[197] Mo, C.; Singh, J.; Raney, JR; Purohit, PK, Cnoidal wave propagation in an elastic metamaterial, Phys. Rev. E, 100, 1, 013001 (2019) · doi:10.1103/PhysRevE.100.013001
[198] Deng, B., Li, J., Tournat, V., Purohit, P.K., Bertoldi, K.: Dynamics of mechanical metamaterials: a framework to connect phonons, nonlinear periodic waves and solitons. J. Mech. Phys. Solids 147, 104233 (2021). doi:10.1016/J.JMPS.2020.104233
[199] Gao, F.; Bermak, A.; Benchabane, S.; Raschetti, M.; Khelif, A., Nonlinear effects in locally resonant nanostrip phononic metasurface at GHz frequencies, Appl. Phys. Lett., 118, 11 (2021) · doi:10.1063/5.0040244
[200] Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, VE; Tournat, V., Nonlinear hysteretic torsional waves, Phys. Rev. Lett., 115, 5 (2015) · doi:10.1103/PhysRevLett.115.054301
[201] Katz, S., Givli, S.: Boomerons in a 1-D lattice with only nearest-neighbor interactions. EPL (Europhys. Lett.) 131(6), 64002 (2020). doi:10.1209/0295-5075/131/64002
[202] Cha, J., Daraio, C.: Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. Nat. Nanotechnol. 13(11), 1016-1020 (2018). doi:10.1038/s41565-018-0252-6
[203] Fronk, MD; Leamy, MJ, Isolated frequencies at which nonlinear materials behave linearly, Phys. Rev. E, 100, 5 (2019) · doi:10.1103/PhysRevE.100.051002
[204] Tournat, V.; Gusev, VE; Castagnède, B., Self-demodulation of elastic waves in a one-dimensional granular chain, Phys. Rev. E, 70, 5 (2004) · Zbl 1138.76427 · doi:10.1103/PhysRevE.70.056603
[205] McFarland, DM; Kerschen, G.; Kowtko, JJ; Lee, YS; Bergman, LA; Vakakis, AF, Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators, J. Acoust. Soc. Am., 118, 2, 791 (2005) · doi:10.1121/1.1944649
[206] Kerschen, G.; Lee, YS; Vakakis, AF; Mcfarland, DM; Bergman, LA, Irreversible passive energy transfer in coupled oscillators with essential nonlinearity, SIAM J. Appl. Math., 66, 2, 648-679 (2006) · Zbl 1130.74386 · doi:10.1137/040613706
[207] Tsakmakidis, KL; Shen, L.; Schulz, SA; Zheng, X.; Upham, J.; Deng, X.; Altug, H.; Vakakis, AF; Boyd, RW, Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering, Science, 356, 6344, 1260-1264 (2017) · doi:10.1126/science.aam6662
[208] Fleury, R.; Sounas, DL; Sieck, CF; Haberman, MR; Alù, A., Sound isolation and giant linear nonreciprocity in a compact acoustic circulator, Science, 343, 6170, 516-519 (2014) · doi:10.1126/science.1246957
[209] Fleury, R., Sounas, D.L., Alù, A.: Subwavelength ultrasonic circulator based on spatiotemporal modulation. Phys. Rev .B 91(17), 174306 (2015). doi:10.1103/PhysRevB.91.174306
[210] Korteweg, D.J., de Vries, G.: XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39(240), 422-443 (1895). doi:10.1080/14786449508620739 · JFM 26.0881.02
[211] Friesecke, G., Matthies, K.: Atomic-scale localization of high-energy solitary waves on lattices. Phys. D: Nonlinear Phenomena 171(4), 211-220 (2002). doi:10.1016/S0167-2789(02)00604-8 · Zbl 1064.82022
[212] Flach, S.; Willis, CR, Discrete breathers, Phys. Rep. (1998) · Zbl 0960.82019 · doi:10.1016/S0370-1573(97)00068-9
[213] Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981) · Zbl 0449.34001
[214] Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. Los Alamos Scientific Laboratory, Los Alamos, N. M., 1955, Tech. Rep. LA (1940) · Zbl 0353.70028
[215] Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240-243 (1965). doi:10.1103/PhysRevLett.15.240 · Zbl 1201.35174
[216] Toda, M., Vibration of a chain with nonlinear interaction, J. Phys. Soc. Jpn., 22, 2, 431-436 (1967) · doi:10.1143/JPSJ.22.431
[217] Kadomtsev, B.; Petviashvili, V., On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15, 6, 539-541 (1970) · Zbl 0217.25004
[218] Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30(25), 1262-1264 (1973). doi:10.1103/PhysRevLett.30.1262
[219] Russell, J.S.: Report on wavesReport of the 14th Meeting of the British Association for the Advancement of Science, 311-390 (1844)
[220] Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21-66 (2008). doi:10.1016/j.physrep.2007.10.007
[221] Tsai, DH; Beckett, CW, Shock wave propagation in cubic lattices, J. Geophys. Res., 71, 10, 2601-2608 (1966) · doi:10.1029/jz071i010p02601
[222] Strenzwilk, DF, Shock profiles caused by different end conditions in one-dimensional quiescent lattices, J. Appl. Phys., 50, 11, 6767 (1979) · doi:10.1063/1.325871
[223] Hill, T.G., Knopoff, L.: Propagation of shock waves in one-dimensional crystal lattices. J. Geophys. Res. Solid Earth 85(B12), 7025-7030 (1980). doi:10.1029/JB085iB12p07025
[224] Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61(8), 970-973 (1988). doi:10.1103/PhysRevLett.61.970
[225] Bickham, SR; Kiselev, SA; Sievers, AJ, Stationary and moving intrinsic localized modes in one-dimensional monatomic lattices with cubic and quartic anharmonicity, Phys. Rev. B, 47, 21, 14206-14211 (1993) · doi:10.1103/PhysRevB.47.14206
[226] Dauxois, T., Peyrard, M.: Energy localization in nonlinear lattices. Phys. Rev. Lett. 70(25), 3935 (1993). doi:10.1103/PhysRevB.47.14206 · Zbl 0906.76027
[227] Dey, B.; Eleftheriou, M.; Flach, S.; Tsironis, GP, Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems, Phys. Rev. E, 65, 1 (2001) · doi:10.1103/PhysRevE.65.017601
[228] Flytzanist, N., Pnevmatikoss, S., Remoissenetf, M.: Kink, breather and asymmetric envelope or dark solitons in nonlinear chains. I. Monatomic chain. J. Phys. C Solid State Phys. 18(24), 4603 (1985). doi:10.1088/0022-3719/18/24/009
[229] Sreelatha, KS; Babu Joseph, K., Wave propagation through a 2D lattice, Chaos Solitons Fract., 11, 5, 711-719 (2000) · Zbl 0984.37094 · doi:10.1016/S0960-0779(98)00175-1
[230] Geniet, F.; Leon, J., Energy transmission in the forbidden band gap of a nonlinear chain, Phys. Rev. Lett., 89, 13, 134102 (2002) · doi:10.1103/PhysRevLett.89.134102
[231] Leon, J., Nonlinear supratransmission as a fundamental instability, Phys. Lett., 319, 1-2, 130-136 (2003) · Zbl 1073.74557 · doi:10.1016/j.physleta.2003.10.012
[232] Duan, WS; Shi, Y.; Zhang, L.; Lin, MM; Lv, K., Coupled nonlinear waves in two-dimensional lattice, Chaos Solitons Fract., 23, 3, 957-962 (2005) · Zbl 1135.37333 · doi:10.1016/j.chaos.2004.06.007
[233] Kevrekidis, PG, Non-linear waves in lattices: past, present, future, IMA J. Appl. Math., 76, 3, 389-423 (2011) · Zbl 1230.37099 · doi:10.1093/imamat/hxr015
[234] Vakakis, AF; King, ME; Pearlstein, AJ, Forced localization in a periodic chain of non-linear oscillators, Int. J. Non-Linear Mech., 29, 3, 429-447 (1994) · Zbl 0848.70016 · doi:10.1016/0020-7462(94)90013-2
[235] Vakakis, AF; King, ME, Nonlinear wave transmission in a monocoupled elastic periodic system, J. Acoust. Soc. Am., 98, 3, 1534 (1995) · doi:10.1121/1.413419
[236] Marathe, A.; Chatterjee, A., Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales, J. Sound Vib., 289, 4-5, 871-888 (2006) · doi:10.1016/j.jsv.2005.02.047
[237] King, ME; Vakakis, AF, An energy-based formulation for computing nonlinear normal modes in undamped continuous systems, J. Vib. Acoust., 116, 3, 332-340 (1994) · doi:10.1115/1.2930433
[238] Lepidi, M.; Bacigalupo, A., Wave propagation properties of one-dimensional acoustic metamaterials with nonlinear diatomic microstructure, Nonlinear Dyn., 98, 4, 2711-2735 (2019) · Zbl 1430.74068 · doi:10.1007/s11071-019-05032-3
[239] Zivieri, R.; Garescì, F.; Azzerboni, B.; Chiappini, M.; Finocchio, G., Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems, J. Sound Vib., 462, 114929 (2019) · doi:10.1016/j.jsv.2019.114929
[240] Xu, X.; Barnhart, MV; Fang, X.; Wen, J.; Chen, Y.; Huang, G., A nonlinear dissipative elastic metamaterial for broadband wave mitigation, Int. J. Mech. Sci., 164, 105159 (2019) · doi:10.1016/j.ijmecsci.2019.105159
[241] Wang, YZ; Li, FM; Wang, YS, Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain, Int. J. Mech. Sci., 106, 357-362 (2016) · doi:10.1016/j.ijmecsci.2015.12.004
[242] Chen, Z.; Zhou, W.; Lim, CW, Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials, Int. J. Non-Linear Mech., 125, 103535 (2020) · doi:10.1016/j.ijnonlinmec.2020.103535
[243] Basone, F.; Bursi, OS; Aloschi, F.; Fischbach, G., Vibration mitigation of an MDoF system subjected to stochastic loading by means of hysteretic nonlinear locally resonant metamaterials, Sci. Rep., 11, 1, 9728 (2021) · doi:10.1038/s41598-021-88984-0
[244] Martakis, P., Aguzzi, G., Dertimanis, V.K., Chatzi, E.N., Colombi, A.: Nonlinear periodic foundations for seismic protection: practical design, realistic evaluation and stability considerations. Soil Dyn. Earthq. Eng. 150,(2021). doi:10.1016/j.soildyn.2021.106934
[245] Liang, B.; Yuan, B.; Cheng, JC, Acoustic diode: rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett., 103, 10, 104301 (2009) · doi:10.1103/PhysRevLett.103.104301
[246] Liang, B.; Guo, XS; Tu, J.; Zhang, D.; Cheng, JC, An acoustic rectifier, Nat. Mater., 9, 12, 989-992 (2010) · doi:10.1038/nmat2881
[247] Hvatov, A.; Sorokin, S., Analysis of periodicity-induced attenuation effect in a nonlinear waveguide by means of the method of polynomial system resultants, Mech. Res. Commun., 103, 103476 (2020) · doi:10.1016/j.mechrescom.2020.103476
[248] Morozov, AY; Shakirov, SR, New and old results in resultant theory, Theor. Math. Phys., 163, 2, 587-617 (2010) · Zbl 1254.15011 · doi:10.1007/s11232-010-0044-0
[249] Bunyan, J.; Tawfick, S., Exploiting structural instability to design architected materials having essentially nonlinear stiffness, Adv. Eng. Mater., 21, 2, 1800791 (2019) · doi:10.1002/adem.201800791
[250] Friesecke, G.; Pego, RL, Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory, Nonlinearity, 17, 1, 207 (2003) · Zbl 1103.37049 · doi:10.1088/0951-7715/17/1/013
[251] Newton, PK; Keller, JB, Stability of periodic plane waves, SIAM J. Appl. Math., 47, 5, 959-964 (1987) · Zbl 0644.35011 · doi:10.1137/0147063
[252] Zhang, Z.; Manevitch, LI; Smirnov, V.; Bergman, LA; Vakakis, AF, Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane, J. Mech. Phys. Solids, 110, 1-20 (2018) · doi:10.1016/j.jmps.2017.09.007
[253] Chaunsali, R., Xu, H., Yang, J., Kevrekidis, P.G., Theocharis, G.: Stability of topological edge states under strong nonlinear effects. Phys. Rev. B 103(2), 024106 (2021). doi:10.1103/PhysRevB.103.024106
[254] Tempelman, J.R., Matlack, K.H., Vakakis, A.F.:Topological protection in a strongly nonlinear interface lattice arxiv:2105.08137 (2021)
[255] Vakakis, AF; King, ME, Resonant oscillations of a weakly coupled, nonlinear layered system, Acta Mech., 128, 1-2, 59-80 (1998) · Zbl 0905.73014 · doi:10.1007/BF01463160
[256] Ziv, R.; Shmuel, G., Smooth waves and shocks of finite amplitude in soft materials, Mech. Mater., 135, 67-76 (2019) · doi:10.1016/j.mechmat.2019.05.002
[257] Giammarinaro, B., Espíndola, D., Coulouvrat, F., Pinton, G.: Focusing of shear shock waves. Phys. Rev. Appl. 9(1), 014011 (2018). doi:10.1103/PhysRevApplied.9.014011
[258] Lints, M.; Dos Santos, S.; Salupere, A., Solitary waves for non-destructive testing applications: delayed nonlinear time reversal signal processing optimization, Wave Motion, 71, 101-112 (2017) · Zbl 1461.74085 · doi:10.1016/j.wavemoti.2016.07.001
[259] Lopez-Pamies, O., Ponte Castañeda, P.: Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II-results. J. Mech. Phys. Solids 55(8), 1702-1728 (2007). doi:10.1016/j.jmps.2007.01.008 · Zbl 1162.74429
[260] Abedinnasab, MH; Hussein, MI, Wave dispersion under finite deformation, Wave Motion, 50, 3, 374-388 (2013) · Zbl 1454.74094 · doi:10.1016/j.wavemoti.2012.10.008
[261] Liu, M., Zhu, W.D.: Modeling and analysis of nonlinear wave propagation in one-dimensional phononic structures. J. Vib. Acoust. 140(6), 061010(2018). doi:10.1115/1.4039570
[262] Midtvedt, D.; Isacsson, A.; Croy, A., Nonlinear phononics using atomically thin membranes, Nat. Commun., 5, 1, 4838 (2014) · doi:10.1038/ncomms5838
[263] Harne, RL; Wang, KW, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct., 22, 2 (2013) · doi:10.1088/0964-1726/22/2/023001
[264] Kochmann, DM; Bertoldi, K., Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions, Appl. Mech. Rev., 69, 5 (2017) · doi:10.1115/1.4037966
[265] Bilal, OR; Foehr, A.; Daraio, C., Bistable metamaterial for switching and cascading elastic vibrations, Proc. Natl. Acad. Sci., 114, 18, 4603-4606 (2017) · doi:10.1073/pnas.1618314114
[266] Frazier, MJ; Kochmann, DM, Atomimetic mechanical structures with nonlinear topological domain evolution kinetics, Adv. Mater., 29, 19, 1605800 (2017) · doi:10.1002/adma.201605800
[267] Georgiou, IT; Vakakis, AF, An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators, Int. J. Non-Linear Mech., 31, 6, 871-886 (1996) · Zbl 0906.70019 · doi:10.1016/S0020-7462(96)00104-7
[268] Deng, B.; Yu, S.; Forte, AE; Tournat, V.; Bertoldi, K., Characterization, stability, and application of domain walls in flexible mechanical metamaterials, Proc. Natl. Acad. Sci., 117, 49, 31002-31009 (2020) · Zbl 1485.74006 · doi:10.1073/PNAS.2015847117
[269] Liu, AJ; Nagel, SR, The jamming transition and the marginally jammed solid, Ann. Rev. Condens. Matter Phys., 1, 1, 347-369 (2010) · doi:10.1146/annurev-conmatphys-070909-104045
[270] Ngo, D.; Khatri, D.; Daraio, C., Highly nonlinear solitary waves in chains of ellipsoidal particles, Phys. Rev. E, 84, 2, 026610 (2011) · doi:10.1103/PhysRevE.84.026610
[271] Khatri, D.; Ngo, D.; Daraio, C., Highly nonlinear solitary waves in chains of cylindrical particles, Granul. Matter, 14, 1, 63-69 (2012) · doi:10.1007/s10035-011-0297-9
[272] Porter, M.A., Daraio, C., Szelengowicz, I., Herbold, E.B., Kevrekidis, P.G.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Phys. D: Nonlinear Phenomena 238(6), 666-676 (2009). doi:10.1016/j.physd.2008.12.010 · Zbl 1160.37410
[273] Burgoyne, H.A., Newman, J.A., Jackson, W.C., Daraio, C.: Guided impact mitigation in 2D and 3D granular crystals. Procedia Engineering, vol. 103 (Elsevier Ltd, 2015), vol. 103, 103, 52-59 (2015). doi:10.1016/j.proeng.2015.04.008
[274] Rosas, A.; Lindenberg, K., Pulse velocity in a granular chain, Phys. Rev. E, 69, 3, 037601 (2004) · doi:10.1103/PhysRevE.69.037601
[275] Starosvetsky, Y.; Vakakis, AF, Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression, Phys. Rev. E, 82, 2, 026603 (2010) · doi:10.1103/PhysRevE.82.026603
[276] Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer-Verlag, New York (2001)
[277] Kim, E., Yang, J.: Review: wave propagation in granular metamaterials. Functional Composites and Structures 1(1), 012002 (2019). doi:10.1088/2631-6331/ab0c7e
[278] Vakakis A.F.: Methodologies for nonlinear periodic media. In: Romeo F., Ruzzene M. (eds) Wave Propagation in Linear and Nonlinear Periodic Media: Analysis and Applications. CISM Courses and Lectures, vol. 540, pp. 257-326. Springer, Vienna (2012). doi:10.1007/978-3-7091-1309-7_5 · Zbl 1279.74020
[279] Leonard, A.; Chong, C.; Kevrekidis, PG; Daraio, C., Traveling waves in 2D hexagonal granular crystal lattices, Granul. Matter, 16, 4, 531-542 (2014) · doi:10.1007/s10035-014-0487-3
[280] Manjunath, M.; Awasthi, AP; Geubelle, PH, Plane wave propagation in 2D and 3D monodisperse periodic granular media, Granul. Matter, 16, 1, 141-150 (2014) · doi:10.1007/s10035-013-0475-z
[281] Jayaprakash, KR; Starosvetsky, Y.; Vakakis, AF; Peeters, M.; Kerschen, G., Nonlinear normal modes and band zones in granular chains with no pre-compression, Nonlinear Dyn., 63, 3, 359-385 (2011) · doi:10.1007/s11071-010-9809-0
[282] Serra-Garcia, M.; Lydon, J.; Daraio, C., Extreme stiffness tunability through the excitation of nonlinear defect modes, Phys. Rev. E, 93, 1, 010901 (2016) · doi:10.1103/PhysRevE.93.010901
[283] Merkel, A., Tournat, V., Gusev, V.: Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys. Rev. E 82(3), 031305 (2010). doi:10.1103/PhysRevE.82.031305
[284] Merkel, A.; Tournat, V.; Gusev, V., Experimental evidence of rotational elastic waves in granular phononic crystals, Phys. Rev. Lett., 107, 22, 225502 (2011) · doi:10.1103/PhysRevLett.107.225502
[285] Xu, Y.; Nesterenko, VF, Propagation of short stress pulses in discrete strongly nonlinear tunable metamaterials, Philos. Trans. R. Soc. A, 372, 2023, 20130186 (2014) · Zbl 1353.74041 · doi:10.1098/rsta.2013.0186
[286] Xu, Y.; Nesterenko, VF, Attenuation of short stress pulses in strongly nonlinear dissipative metamaterial, J. Appl. Phys., 117, 11, 114303 (2015) · doi:10.1063/1.4914066
[287] Pantelides, CP; Ma, X., Linear and nonlinear pounding of structural systems, Comput. Struct., 66, 1, 79-92 (1998) · doi:10.1016/S0045-7949(97)00045-X
[288] Thota, P., Dankowicz, H.: Continuous and discontinuous grazing bifurcations in impacting oscillators. Phys. D: Nonlinear Phenomena 214(2), 187-197 (2006). doi:10.1016/j.physd.2006.01.006 · Zbl 1100.34032
[289] Ing, J.; Pavlovskaia, E.; Wiercigroch, M.; Banerjee, S., Experimental study of impact oscillator with one-sided elastic constraint, Philos. Trans. R. Soc., 366, 1866, 679-705 (2008) · Zbl 1153.74302 · doi:10.1098/rsta.2007.2122
[290] Karayannis, I.; Vakakis, AF; Georgiades, F., Vibro-impact attachments as shock absorbers, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 222, 10, 1899-1908 (2008) · doi:10.1243/09544062JMES864
[291] Rekhy, A.; Snyder, R.; Manimala, J., On the frequency up-conversion mechanism in metamaterials-inspired vibro-impact structures, Acoustics, 1, 1, 156-173 (2019) · doi:10.3390/acoustics1010011
[292] Ma, G.; Sheng, P., Acoustic metamaterials: from local resonances to broad horizons, Sci. Adv., 2, 2 (2016) · doi:10.1126/sciadv.1501595
[293] Konarski, SG; Haberman, MR; Hamilton, MF, Acoustic response for nonlinear, coupled multiscale model containing subwavelength designed microstructure instabilities, Phys. Rev. E, 101, 2, 022215 (2020) · doi:10.1103/PhysRevE.101.022215
[294] Casalotti, A.; El-borgi, S.; Lacarbonara, W., Metamaterial beam with embedded nonlinear vibration absorbers, Int. J. Non-Linear Mech., 98, 32-42 (2018) · doi:10.1016/j.ijnonlinmec.2017.10.002
[295] Liu, Y.; Chen, X.; Xu, Y., Topological phononics: from fundamental models to real materials, Adv. Funct. Mater., 30, 8, 1904784 (2020) · doi:10.1002/adfm.201904784
[296] Hadad, Y.; Khanikaev, AB; Alù, A., Self-induced topological transitions and edge states supported by nonlinear staggered potentials, Phys. Rev. B, 93, 15 (2016) · doi:10.1103/PhysRevB.93.155112
[297] Pal, RK; Vila, J.; Leamy, M.; Ruzzene, M., Amplitude-dependent topological edge states in nonlinear phononic lattices, Phys. Rev. E, 97, 3, 032209 (2018) · doi:10.1103/PhysRevE.97.032209
[298] Vila, J.; Paulino, GH; Ruzzene, M., Role of nonlinearities in topological protection: testing magnetically coupled fidget spinners, Phys. Rev. B, 99, 12, 125116 (2019) · doi:10.1103/PhysRevB.99.125116
[299] Darabi, A.; Leamy, MJ, Tunable nonlinear topological insulator for acoustic waves, Phys. Rev. Appl., 12, 4, 044030 (2019) · doi:10.1103/PhysRevApplied.12.044030
[300] Chaunsali, R.; Theocharis, G., Self-induced topological transition in phononic crystals by nonlinearity management, Phys. Rev. B, 100, 1, 014302 (2019) · doi:10.1103/PhysRevB.100.014302
[301] Chen, BGG; Upadhyaya, N.; Vitelli, V., Nonlinear conduction via solitons in a topological mechanical insulator, Proc. Natl. Acad. Sci., 111, 36, 13004-13009 (2014) · Zbl 1355.70003 · doi:10.1073/pnas.1405969111
[302] Zhou, D.; Ma, J.; Sun, K.; Gonella, S.; Mao, X., Switchable phonon diodes using nonlinear topological Maxwell lattices, Phys. Rev. B, 101, 10, 104106 (2020) · doi:10.1103/PhysRevB.101.104106
[303] Su, WP; Schrieffer, JR; Heeger, AJ, Solitons in polyacetylene, Phys. Rev. Lett., 42, 25, 1698-1701 (1979) · doi:10.1103/PhysRevLett.42.1698
[304] Kim, H.; Kim, E.; Yang, J., Nonlinear wave propagation in 3D-printed graded lattices of hollow elliptical cylinders, J. Mech. Phys. Solids, 125, 774-784 (2019) · doi:10.1016/j.jmps.2019.02.001
[305] Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Natl. Acad. Sci. 107(16), 7230-7234 (2010). doi:10.1073/pnas.1001514107
[306] Donahue, CM; Anzel, PW; Bonanomi, L.; Keller, TA; Daraio, C., Experimental realization of a nonlinear acoustic lens with a tunable focus, Appl. Phys. Lett., 104, 1, 014103 (2014) · doi:10.1063/1.4857635
[307] Yang, J.; Khatri, D.; Anzel, P.; Daraio, C., Interaction of highly nonlinear solitary waves with thin plates, Int. J. Solids Struct., 49, 13, 1463-1471 (2012) · doi:10.1016/j.ijsolstr.2012.02.013
[308] Shaw, LA; Spadaccini, CM; Hopkins, JB, Scanning holographic optical tweezers, Opt. Lett., 42, 15, 2862 (2017) · doi:10.1364/ol.42.002862
[309] Rudykh, S.; Ortiz, C.; Boyce, MC, Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor, Soft Matter, 11, 13, 2547-2554 (2015) · doi:10.1039/C4SM02907K
[310] Dimas, LS; Bratzel, GH; Eylon, I.; Buehler, MJ, Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing, Adv. Funct. Mater., 23, 36, 4629-4638 (2013) · doi:10.1002/adfm.201300215
[311] Liu, Y., He, K., Chen, G., Leow, W.R., Chen, X.: Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 117(20), 12893-12941 (2017). doi:10.1021/acs.chemrev.7b00291
[312] Sepehri, S.; Jafari, H.; Mashhadi, MM; Yazdi, MRH; Fakhrabadi, MMS, Study of tunable locally resonant metamaterials: effects of spider-web and snowflake hierarchies, Int. J. Solids Struct., 204-205, 81-95 (2020) · doi:10.1016/j.ijsolstr.2020.08.014
[313] Miniaci, M., Krushynska, A., Gliozzi, A.S., Kherraz, N., Bosia, F., Pugno, N.M.: Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials. Phys. Rev. Appl. 10(2), 024012(2018). doi:10.1103/PhysRevApplied.10.024012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.