×

Second-order perturbation analysis of low-amplitude traveling waves in a periodic chain with quadratic and cubic nonlinearity. (English) Zbl 1524.35548

Summary: Traveling waves in one-dimensional nonlinear periodic structures are investigated for low-amplitude oscillations using perturbation analysis. We use second-order multiple scales analysis to capture the effects of the quadratic nonlinearity. Comparisons with the linear and cubical nonlinear cases are presented in the propagation and attenuation of the wave as well as the dispersion relationships, group and phase velocities and their dependence on wave number and amplitude of oscillation. Quadratic nonlinearity is shown to have a significant effect on the wave propagation behavior in the chain. Given the wavenumber, the quadratic nonlinearity (with nonzero linear and zero cubic terms) has shown to produce higher frequencies than linear system. At lower wave numbers, the quadratic system has higher phase and group velocities than the linear case. At higher wave numbers, however, the group velocities for the quadratic system are lower as compared to the linear case.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B10 Periodic solutions to PDEs
35C07 Traveling wave solutions
Full Text: DOI

References:

[1] Page, J.; Sukhovich, A.; Yang, S.; Cowan, M.; van der Bi-est, F.; Tourin, A.; Fink, M.; Liu, Z.; Chan, C.; Sheng, P., Phononic crystals, Solid State Phys., 241, 15, 3454-3462 (2004)
[2] Bertoldi, K.; Boyce, M., Mechanically triggered transformations of phononic band gap elastomeric structures, Phys. Rev. B, 77, 052105 (2008)
[3] Jang, J. H.; Ullal, C. K.U.; Gorishnyy, T.; Tsukruk, V. V.; Thomas, E. L., Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography, Nano Lett., 6, 4, 740-743 (2006)
[4] Liang, B.; Yuan, B.; Cheng, J. C., Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett., 13, Article 104301 pp. (2009)
[5] Olsson, R. H.I.; El-Kady, I. F.; Su, M. F.; Tuck, M. R.; Fleming, J. G., Microfabricated vhf acoustic crystals and waveguides, Sensors Actuators A, 20, 1, 87-93 (2008)
[6] Olsson, R. H.I.; El-Kady, I., Microfabricated phononic crystal devices and applications, Meas. Sci. Technol., 20, 1, Article 012002 pp. (2009)
[7] Sigmund, O.; Jensen, J. S., Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. R. Soc. Ser. A Math. Phys. Eng. Sci., 361, 1806, 1001-1019 (2003) · Zbl 1067.74053
[8] Yun, Y.; Miao, G. Q.; Zhang, P.; Huang, K.; Wei, R. J., Nonlinear acoustic wave propagating in one-dimensional layered system, Phys. Lett. A, 343, 5, 351-358 (2005) · Zbl 1194.76265
[9] Marathe, A.; Chatterjee, A., Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales, J. Sound Vib., 289, 4-5, 871-888 (2005)
[10] Narisetti, R. K.; Leamy, M. J.; Ruzzene, M., A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures, ASME J. Vib. Acoust., 132, 3, Article 031001 pp. (2010)
[11] Narisetti, R. K.; Ruzzene, M.; Leamy, M. J., A perturbation approach for analyzing dispersion and group velocities in two-dimensional nonlinear periodic lattices, ASME J. Vib. Acoust., 133, 6, Article 061020 pp. (2011)
[12] Nayfeh, A. H.; Rice, M. H., On the propagation of disturbances in a semi-infinite one-dimensional lattice, Amer. J. Phys., 40, 3, 469-470 (1972)
[13] Daraio, C.; Nesterenko, V. F.; Herbold, E. B.; Jin, S., Strongly nonlinear waves in a chain of teflon beads, Phys. Rev. E, 72, 1, Article 016603 pp. (2005)
[14] Peyrard, M.; Kruskal, M. D., Kink dynamics in the highly discrete sine-gordon system, Physica D, 14, 1, 88-102 (1984)
[15] Vakakis, A. F.; King, M. E., Nonlinear wave transmission in a monocoupled elastic periodic system, J. Acoust. Soc. Am., 98, 3, 1534-1546 (1995)
[16] Vakakis, A. F.; King, M. E., Resonant oscillations of a weakly coupled, nonlinear layered system, Acta Mech., 128, 1, 59-80 (1998) · Zbl 0905.73014
[17] Asfar, O. R.; Nayfeh, A. H., The application of the method of multiple scales to wave propagation in periodic structures, Soc. Ind. Math. Rev., 25, 4, 455-480 (1983)
[18] Chakraborty, G.; Mallik, A. K., Dynamics of a weakly nonlinear periodic chain, Internat. J. Non-Linear Mech., 36, 2, 375-389 (2001) · Zbl 1345.74059
[19] Rushchitsky, J. J.; Savel’eva, E. V., On the interaction of cubically nonlinear transverse plane waves in an elastic material, Internat. Appl. Mech., 42, 6, 661-668 (2006) · Zbl 1114.74410
[20] Rothos, V. M.; Vakakis, A. F., Dynamic interactions of traveling waves propagating in a linear chain with an local essentially nonlinear attachment, Wave Motion, 46, 3, 174-188 (2009) · Zbl 1231.74251
[22] Hussein, M. I.; Hamza, K.; Hulbert, G.; Saitou, K., Optimal synthesis of 2d phononic crystals for broadband frequency isolation, Waves Random Complex Media, 17, 4 (2007) · Zbl 1191.74043
[23] Diaz, A.; Haddow, A.; Ma, L., Design of band-gap grid structures, Struct. Multidiscip. Optim., 29, 6, 418-431 (2005)
[24] Manktelow, K.; Leamy, M. J.; Ruzzene, M., Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain, Nonlinear Dynam., 63, 193-203 (2011) · Zbl 1215.74039
[25] Panigrahi, S. R.; Feeny, B. F.; Diaz, A. R., Degenerate “star” bifurcations in a twinkling oscillator, J. Vib. Acoust., 136, 2, Article 021004 pp. (2014)
[26] Panigrahi, S. R.; Feeny, B. F.; Diaz, A. R., ‘Eclipse’ bifurcation in a twinkling oscillator, J. Vib. Acoust., 136, 3, Article 034504 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.