×

Higher lattices, discrete two-dimensional holonomy and topological phases in \((3+1)\) d with higher gauge symmetry. (English) Zbl 1444.81036

Summary: Higher gauge theory is a higher order version of gauge theory that makes possible the definition of 2-dimensional holonomy along surfaces embedded in a manifold where a gauge 2-connection is present. In this paper, we study Hamiltonian models for discrete higher gauge theory on a lattice decomposition of a manifold. We show that a construction for higher lattice gauge theory is well-defined, including in particular a Hamiltonian for topological phases of matter in \(3+1\) dimensions. Our construction builds upon the Kitaev quantum double model, replacing the finite gauge connection with a finite gauge 2-group 2-connection. Our Hamiltonian higher lattice gauge theory model is defined on spatial manifolds of arbitrary dimension presented by slightly combinatorialized CW-decompositions (2-lattice decompositions), whose 1-cells and 2-cells carry discrete 1-dimensional and 2-dimensional holonomy data. We prove that the ground-state degeneracy of Hamiltonian higher lattice gauge theory is a topological invariant of manifolds, coinciding with the number of homotopy classes of maps from the manifold to the classifying space of the underlying gauge 2-group. The operators of our Hamiltonian model are closely related to discrete 2-dimensional holonomy operators for discretized 2-connections on manifolds with a 2-lattice decomposition. We therefore address the definition of discrete 2-dimensional holonomy for surfaces embedded in 2-lattices. Several results concerning the well-definedness of discrete 2-dimensional holonomy, and its construction in a combinatorial and algebraic topological setting are presented.

MSC:

81T45 Topological field theories in quantum mechanics
53C29 Issues of holonomy in differential geometry
57R56 Topological quantum field theories (aspects of differential topology)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Baez, J. C., Four-dimensional BF theory as a topological quantum field theory, Lett. Math. Phys.38(2) (1996) 129-143. · Zbl 0858.57022
[2] Baez, J. C., An introduction to spin foam models of \(BF\) theory and quantum gravity, in Geometry and Quantum Physics (Schladming, 1999), , Vol. 543 (Springer, Berlin, 2000), pp. 25-93. · Zbl 0978.81043
[3] Baez, J. C. and Huerta, J., An invitation to higher gauge theory, Gen. Relativity Gravitation43(9) (2011) 2335-2392. · Zbl 1225.83001
[4] Baez, J. C. and Lauda, A. D., Higher-dimensional algebra. V: 2-Groups, Theory Appl. Categ.12 (2004) 423-491. · Zbl 1056.18002
[5] Baez, J. C. and Schreiber, U., Higher gauge theory, in Categories in Algebra, Geometry and Mathematical Physics, Conference and Workshop in Honor of Ross Street’s 60th Birthday, Sydney and Canberra, Australia, , July 11-16/July 18-21, 2005 (American Mathematical Society (AMS), 2007), pp. 7-30. · Zbl 1132.55007
[6] Barrett, J. and Westbury, B., Invariants of piecewise-linear 3-manifolds, Trans. Amer. Math. Soc.348(10) (1996) 3997-4022. · Zbl 0865.57013
[7] Barrett, J. W. and Mackaay, M., Categorical representations of categorical groups, Theory Appl. Categ.16 (2006) 529-557. · Zbl 1108.18003
[8] Baues, H. J., Combinatorial Homotopy and 4-Dimensional Complexes, , Vol. 2 (Walter de Gruyter & Co., Berlin, 1991); With a preface by Ronald Brown. · Zbl 0716.55001
[9] Breen, L. and Messing, W., Differential geometry of gerbes, Adv. Math.198(2) (2005) 732-846. · Zbl 1102.14013
[10] Brown, R., On the second relative homotopy group of an adjunction space: An exposition of a theorem of J. H. C. Whitehead, J. Lond. Math. Soc., II. Ser.22 (1980) 146-152. · Zbl 0427.55012
[11] Brown, R., Groupoids and crossed objects in algebraic topology, Homology Homotopy Appl.1 (1999) 1-78. · Zbl 0920.55002
[12] R. Brown, Topology and Groupoids, 3rd Revised, Updated and Extended Edn. (Ronald Brown, 2006). · Zbl 1093.55001
[13] Brown, R. and Higgins, P. J., On the connection between the second relative homotopy groups of some related spaces, Proc. London Math. Soc. (3)36(2) (1978) 193-212. · Zbl 0405.55015
[14] Brown, R. and Higgins, P. J., Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra22 (1981) 11-41. · Zbl 0475.55009
[15] Brown, R. and Higgins, P. J., On the algebra of cubes, J. Pure Appl. Algebra21 (1981) 233-260. · Zbl 0468.55007
[16] Brown, R. and Higgins, P. J., Tensor products and homotopies for \(\omega \)-groupoids and crossed complexes, J. Pure Appl. Algebra47(1) (1987) 1-33. · Zbl 0621.55009
[17] Brown, R. and Higgins, P. J., The classifying space of a crossed complex, Math. Proc. Camb. Philos. Soc.110(1) (1991) 95-120. · Zbl 0732.55007
[18] R. Brown, P. J. Higgins and R. Sivera, Nonabelian Algebraic Topology. Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids, With contributions by Christopher D. Wensley and Sergei V. Soloviev (European Mathematical Society (EMS), 2011). · Zbl 1237.55001
[19] Brown, R. and İçen, İ., Homotopies and automorphisms of crossed modules of groupoids, Appl. Categ. Structures11(2) (2003) 185-206. · Zbl 1029.20025
[20] Brown, R. and İçen, İ., Towards a 2-dimensional notion of holonomy, Adv. Math.178(1) (2003) 141-175. · Zbl 1039.18004
[21] Brown, R. and Spencer, C. B., Double groupoids and crossed modules, Cahiers Topologie Géom. Différentielle17(4) (1976) 343-362. · Zbl 0344.18004
[22] Brown, R. and Spencer, C. B., \(G\)-groupoids, crossed modules and the fundamental groupoid of a topological group, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math.38(4) (1976) 296-302. · Zbl 0333.55011
[23] Bullivant, A., Calçada, M., Kádár, Z., Martin, P. and Martins, J., Topological phases from higher gauge symmetry in 3+1 dimensions, Phys. Rev. B95 (2017) 155118.
[24] Burnell, F. J., von Keyserlingk, C. W. and Simon, S. H., Phase transitions in three-dimensional topological lattice models with surface anyons, Phy. Rev. B88(23) (2013) 235120.
[25] Crane, L. and Yetter, D., A categorical construction of 4D topological quantum field theories, in Quantum Topology, , Vol. 3 (World Sci. Publ., River Edge, NJ, 1993), pp. 120-130. · Zbl 0841.57030
[26] Crowell, R. H. and Fox, R. H., Introduction to Knot Theory, Vol. 57 (Springer Science & Business Media, 2012). · Zbl 0126.39105
[27] S. X Cui, Higher categories and topological quantum field theories (2016); arXiv:1610.07628.
[28] Dijkgraaf, R. and Witten, E., Topological gauge theories and group cohomology, Comm. Math. Phys.129(2) (1990) 393-429. · Zbl 0703.58011
[29] Faria Martins, J., On the homotopy type and the fundamental crossed complex of the skeletal filtration of a CW-complex, Homology Homotopy Appl.9(1) (2007) 295-329. · Zbl 1114.55002
[30] Faria Martins, J., The fundamental crossed module of the complement of a knotted surface, Trans. Amer. Math. Soc.361(9) (2009) 4593-4630. · Zbl 1200.57014
[31] Faria Martins, J., The fundamental 2-crossed complex of a reduced CW-complex, Homology Homotopy Appl.13(2) (2011) 129-157. · Zbl 1230.55012
[32] Faria Martins, J. and Gohla, B., Pointed homotopy and pointed lax homotopy of 2-crossed module maps, Adv. Math.248 (2013) 986-1049. · Zbl 1332.18010
[33] Faria Martins, J. and Miković, A., Lie crossed modules and gauge-invariant actions for 2-BF theories, Adv. Theor. Math. Phys.15(4) (2011) 1059-1084. · Zbl 1296.81062
[34] Faria Martins, J. and Picken, R., Surface holonomy for non-Abelian 2-bundles via double groupoids, Adv. Math.226(4) (2011) 3309-3366. · Zbl 1214.53043
[35] Faria Martins, J. and Porter, T., On Yetter’s invariant and an extension of the Dijkgraaf-Witten invariant to categorical groups, Theory Appl. Categ18(4) (2007) 118-150. · Zbl 1119.18009
[36] Fradkin, E., Field Theories of Condensed Matter Systems, Vol. 7 (Addison-Wesley, Redwood City, 1991). · Zbl 0984.82504
[37] Fritsch, R. and Piccinini, R. A., Cellular Structures in Topology (Cambridge University Press, 1990). · Zbl 0837.55001
[38] Girelli, F., Pfeiffer, H. and Popescu, E. M., Topological higher gauge theory: From \(BF\) to \(BFCG\) theory, J. Math. Phys.49(3) (2008) 032503. · Zbl 1153.81366
[39] Hamma, A., Ionicioiu, R. and Zanardi, P., Bipartite entanglement and entropic boundary law in lattice spin systems, Phys. Rev. A71 (2005) 022315. · Zbl 1135.81314
[40] Hatcher, A., Algebraic Topology (Cambridge University Press, 2002). · Zbl 1044.55001
[41] Higgins, P. J., Categories and groupoids, Repr. Theory Appl. Categ.2005(7) (2005) 1-195. · Zbl 1087.20038
[42] Hu, Y., Wan, Y. and Wu, Y.-S., Twisted quantum double model of topological phases in two dimensions, Phys. Rev. B87(12) (2013) 125114.
[43] Kadar, Z., Martin, P., Rowell, E. and Wang, Z., Local representations of the loop braid group, Glasgow Math. J.59(2) (2017) 359-378. · Zbl 1430.20006
[44] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, ArXiv e-prints (2013). · Zbl 1385.81034
[45] Kapustin, A., Ground-state degeneracy for abelian anyons in the presence of gapped boundaries, Phys. Rev. B89(12) (2014) 125307.
[46] Kitaev, A. and Preskill, J., Topological entanglement entropy, Phys. Rev. Lett.96 (2006) 110404.
[47] Kitaev, A. Yu., Fault-tolerant quantum computation by anyons, Ann. Phys.303(1) (2003) 2-30. · Zbl 1012.81006
[48] Kogut, J. B., An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys.51(4) (1979) 659-713.
[49] L. Kong and X.-G. Wen, Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions (2014); arXiv:1405.5858.
[50] Levin, M. and Wen, X.-G., Detecting topological order in a ground state wave function, Phys. Rev. Lett.96 (2006) 110405.
[51] Levin, M. A. and Wen, X.-G., String-net condensation: A physical mechanism for topological phases, Phys. Rev. B71(4) (2005) 045110.
[52] Lin, C.-H. and Levin, M., Loop braiding statistics in exactly soluble three-dimensional lattice models, Phys. Rev. B92 (2015) 035115.
[53] Lundell, A. T. and Weingram, S., The Topology of CW Complexes, (Van Nostrand Reinhold Company, 1969). · Zbl 0207.21704
[54] MacLane, S. M., Categories for the Working Mathematician, (Springer, 1998). · Zbl 0705.18001
[55] Martin, P., Potts Models and Related Problems in Statistical Mechanics (World Scientific, 1991). · Zbl 0734.17012
[56] Nayak, C., Simon, S. H., Stern, A., Freedman, M. and Das Sarma, S., Non-abelian anyons and topological quantum computation, Rev. Mod. Phys.80 (2008) 1083-1159. · Zbl 1205.81062
[57] Oeckl, R., Discrete Gauge Theory: From Lattices to TQFT (World Scientific, 2005). · Zbl 1159.81006
[58] Pachos, J. K., Introduction to Topological Quantum Computation (Cambridge University Press, 2012). · Zbl 1247.81003
[59] Pfeiffer, H., Higher gauge theory and a non-abelian generalization of 2-form electrodynamics, Ann. Phys.308(2) (2003) 447-477. · Zbl 1056.70013
[60] T. Porter and V. Turaev, Formal homotopy quantum field theories, I: Formal maps and crossed \(C\)-algebras (2005) arxiv:0512032. · Zbl 1205.57024
[61] Porter, T., Topological quantum field theories from homotopy \(n\)-types, J. Lond. Math. Soc., II. Ser.58(3) (1999) 723-732. · Zbl 1097.57501
[62] E. C. Rowell and Z. Wang, Mathematics of topological quantum computing, ArXiv e-prints (2017). · Zbl 1437.81005
[63] Schreiber, U. and Waldorf, K., Smooth functors vs. differential forms, Homology Homotopy Appl.13(1) (2011) 143-203. · Zbl 1230.53025
[64] Schreiber, U. and Waldorf, K., Connections on non-abelian gerbes and their holonomy, Theory Appl. Categ.28 (2013) 476-540. · Zbl 1279.53024
[65] Soncini, E. and Zucchini, R., A new formulation of higher parallel transport in higher gauge theory, J. Geom. Phys.95 (2015) 28-73. · Zbl 1322.81064
[66] Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, Vol. 18 (Walter de Gruyter, 1994). · Zbl 0812.57003
[67] von Keyserlingk, C. W., Burnell, F. J. and Simon, S. H., Three-dimensional topological lattice models with surface anyons, Phys. Rev. B87 (2013) 045107.
[68] Walker, K. and Wang, Z., (3+1)-TQFTs and topological insulators, Front. Phys.7(2) (2012) 150-159.
[69] Wan, Y., Wang, J. C. and He, H., Twisted gauge theory model of topological phases in three dimensions, Phys. Rev. B92(4) (2015) 045101.
[70] Wang, Z., Topological Quantum Computation, Number 112 (American Mathematical Soc., 2010). · Zbl 1239.81005
[71] Wen, X.-G. and Niu, Q., Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B41(13) (1990) 9377-9396.
[72] Whitehead, J. H. C., Combinatorial homotopy. II, Bull. Amer. Math. Soc.55 (1949) 453-496. · Zbl 0040.38801
[73] Williamson, D. J. and Wang, Z., Hamiltonian models for topological phases of matter in three spatial dimensions, Ann. Phys.377 (2017) 311-344. · Zbl 1368.81143
[74] Wilson, K. G., Confinement of quarks, Phys Rev.10 (1974) 2445-2459.
[75] Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys.121(3) (1989) 351-399. · Zbl 0667.57005
[76] Yetter, D. N., TQFTs from homotopy 2-types, J. Knot Theory Ramifications2(01) (1993) 113-123. · Zbl 0787.57002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.