×

Modeling multiple taxis: tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. (English) Zbl 1467.35323

In Section 1, the authors provide a short review of existing models with multiple taxis performed by (at least) one species obtained.
In Section 2, the authors consider a new mathematical model for tumor invasion, which includes two mutually exclusive cellular phenotypes (migrating and such that distribute).
The paper proves the global existence of weak solutions of the simplified version of the model and performed numerical simulations for complete tuning for several phenotypes switching and mobility scenarios. (Section 3)
The authors also compared (using modeling) with the model with the corresponding haptotaxis-chemotaxis containing indirect chemorepellant production (Section 4).
In Section 5, the authors discuss the results obtained.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C17 Cell movement (chemotaxis, etc.)
92C37 Cell biology
35K55 Nonlinear parabolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35D30 Weak solutions to PDEs
92-08 Computational methods for problems pertaining to biology

Software:

Matlab

References:

[1] N. Bellomo, Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach, Birkhäuser Boston, Inc., Boston, MA, 2008. · Zbl 1140.91007
[2] N. Bellomo; A. Bellouquid; Y. Tao; M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, 25, 1663-1763 (2015) · Zbl 1326.35397 · doi:10.1142/S021820251550044X
[3] X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Zeitschrift für Angewandte Mathematik und Physik, 67 (2016), Art. 11, 13 pp. · Zbl 1375.35566
[4] S. B. Carter, Haptotaxis and the mechanism of cell motility, Nature, 213, 256-260 (1967) · doi:10.1038/213256a0
[5] F. Chalub; Y. Dolak-Struss; P. Markowich; D. Oelz; C. Schmeiser; A. Soreff, Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in Applied Sciences, 16, 1173-1197 (2006) · Zbl 1094.92009 · doi:10.1142/S0218202506001509
[6] M. A. J. Chaplain; G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Mathematical Models and Methods in Applied Sciences, 15, 1685-1734 (2005) · Zbl 1094.92039 · doi:10.1142/S0218202505000947
[7] M. Chaplain; G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1, 399-439 (2006) · Zbl 1108.92023 · doi:10.3934/nhm.2006.1.399
[8] A. Chauvière; T. Hillen; L. Preziosi, Modeling cell movement in anisotropic and heterogeneous network tissues, Netw. Heterog. Media, 2, 333-357 (2007) · Zbl 1115.92009 · doi:10.3934/nhm.2007.2.333
[9] L. Chen, K. Painter, C. Surulescu and A. Zhigun, Mathematical models for cell migration: A nonlocal perspective, Philosophical Transactions of the Royal Society B: Biological Sciences, 375 (2020), 20190379.
[10] Z. Chen; Y. Tao, Large-data solutions in a three-dimensional chemotaxis-haptotaxis system with remodeling of non-diffusible attractant: The role of sub-linear production of diffusible signal, Acta Applicandae Mathematicae, 163, 129-143 (2018) · Zbl 1423.35194 · doi:10.1007/s10440-018-0216-8
[11] M. Conte and C. Surulescu, Mathematical modeling of vascularized glioma development under the go-or-grow dichotomy, arXiv: 2007.12204.
[12] G. Corbin, C. Engwer, A. Klar, J. Nieto, J. Soler, C. Surulescu and M. Wenske, On a model for glioma invasion with anisotropy- and hypoxia-triggered motility enhancement, arXiv: 2006.12322.
[13] G. Corbin; A. Hunt; A. Klar; F. Schneider; C. Surulescu, Higher-order models for glioma invasion: From a two-scale description to effective equations for mass density and momentum, Mathematical Models and Methods in Applied Sciences, 28, 1771-1800 (2018) · Zbl 1411.92034 · doi:10.1142/S0218202518400055
[14] P. Domschke; D. Trucu; A. Gerisch; M. A. J. Chaplain, Mathematical modelling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns, Journal of Theoretical Biology, 361, 41-60 (2014) · Zbl 1303.92043 · doi:10.1016/j.jtbi.2014.07.010
[15] P. Domschke; D. Trucu; A. Gerisch; M. A. J. Chaplain, Structured models of cell migration incorporating molecular binding processes, J. Math. Biol., 75, 1517-1561 (2017) · Zbl 1373.35317 · doi:10.1007/s00285-017-1120-y
[16] C. Engwer; T. Hillen; M. Knappitsch; C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, Journal of Mathematical Biology, 71, 551-582 (2014) · Zbl 1343.92072 · doi:10.1007/s00285-014-0822-7
[17] C. Engwer; A. Hunt; C. Surulescu, Effective equations for anisotropic glioma spread with proliferation: A multiscale approach and comparisons with previous settings, Mathematical Medicine and Biology, 33, 435-459 (2015) · Zbl 1400.92249 · doi:10.1093/imammb/dqv030
[18] C. Engwer; M. Knappitsch; C. Surulescu, A multiscale model for glioma spread including cell-tissue interactions and proliferation, Mathematical Biosciences and Engineering, 13, 443-460 (2016) · Zbl 1343.92073 · doi:10.3934/mbe.2015011
[19] C. Engwer; C. Stinner; C. Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Math. Models Methods Appl. Sci., 27, 1355-1390 (2017) · Zbl 1371.35149 · doi:10.1142/S0218202517400188
[20] S. M. Frisch; H. Francis, Disruption of epithelial cell-matrix interactions induces apoptosis, J. Cell Biol., 124, 619-626 (1994) · doi:10.1083/jcb.124.4.619
[21] A. Gerisch; M. A. J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, J. Theoret. Biol., 250, 684-704 (2008) · Zbl 1397.92326 · doi:10.1016/j.jtbi.2007.10.026
[22] A. Giese; R. Bjerkvig; M. Berens; M. Westphal, Cost of migration: Invasion of malignant gliomas and implications for treatment, Journal of Clinical Oncology, 21, 1624-1636 (2003) · doi:10.1200/JCO.2003.05.063
[23] A. Giese; L. Kluwe; B. Laube; H. Meissner; M. E. Berens; M. Westphal, Migration of human glioma cells on myelin, Neurosurgery, 38, 755-764 (1996) · doi:10.1227/00006123-199604000-00026
[24] D. Hanahan; R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144, 646-674 (2011) · doi:10.1016/j.cell.2011.02.013
[25] D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society (EMS), Zürich, 2008. · Zbl 1133.46001
[26] H. Hatzikirou; D. Basanta; M. Simon; K. Schaller; A. Deutsch, Go or grow: The key to the emergence of invasion in tumour progression?, Mathematical Medicine and Biology, 29, 49-65 (2010) · Zbl 1234.92031 · doi:10.1093/imammb/dqq011
[27] M. Hieber; J. Prüss, Heat kernels and maximal \(L^p-L^q\) estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22, 1647-1669 (1997) · Zbl 0886.35030 · doi:10.1080/03605309708821314
[28] T. Hillen, A classification of spikes and plateaus, SIAM Rev., 49, 35-51 (2007) · Zbl 1160.35033 · doi:10.1137/050632427
[29] T. Hillen; K. J. A. Painter, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58, 183-217 (2008) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[30] T. Hillen; K. J. Painter; M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Mathematical Models and Methods in Applied Sciences, 23, 165-198 (2013) · Zbl 1263.35204 · doi:10.1142/S0218202512500480
[31] S. Hiremath; C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Analysis: Real World Applications, 22, 176-205 (2015) · Zbl 1359.92049 · doi:10.1016/j.nonrwa.2014.08.008
[32] S. A. Hiremath; C. Surulescu, A stochastic model featuring acid-induced gaps during tumor progression, Nonlinearity, 29, 851-914 (2016) · Zbl 1351.92020 · doi:10.1088/0951-7715/29/3/851
[33] K. S. Hoek; O. M. Eichhoff; N. C. Schlegel; U. Dobbeling; N. Kobert; L. Schaerer; S. Hemmi; R. Dummer, In vivo switching of human melanoma cells between proliferative and invasive states, Cancer Research, 68, 650-656 (2008) · doi:10.1158/0008-5472.CAN-07-2491
[34] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105, 103-165 (2003) · Zbl 1071.35001
[35] D. Horstmann; M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[36] X. Hu; L. Wang; C. Mu; L. Li, Boundedness in a three-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Comptes Rendus Mathematique, 355, 181-186 (2017) · Zbl 1359.92014 · doi:10.1016/j.crma.2016.12.005
[37] A. Hunt; C. Surulescu, A multiscale modeling approach to glioma invasion with therapy, Vietnam Journal of Mathematics, 45, 221-240 (2016) · Zbl 1372.92044 · doi:10.1007/s10013-016-0223-x
[38] S. Ishida; K. Seki; T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256, 2993-3010 (2014) · Zbl 1295.35252 · doi:10.1016/j.jde.2014.01.028
[39] Z. Jia and Z. Yang, Global boundedness to a chemotaxis-haptotaxis model with nonlinear diffusion, Applied Mathematics Letters, 103 (2020), 106192, 6 pp. · Zbl 1440.35020
[40] C. Jin, Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms, Bulletin of the London Mathematical Society, 50, 598-618 (2018) · Zbl 1396.92007 · doi:10.1112/blms.12160
[41] Y. Ke; J. Zheng, A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31, 4602-4620 (2018) · Zbl 1396.92009 · doi:10.1088/1361-6544/aad307
[42] J. Kelkel; C. Surulescu, On some models for cancer cell migration through tissue networks, Mathematical Biosciences and Engineering, 8, 575-589 (2011) · Zbl 1259.35206 · doi:10.3934/mbe.2011.8.575
[43] J. Kelkel and C. Surulescu, A multiscale approach to cell migration in tissue networks, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150017, 25 pp. · Zbl 1241.92041
[44] E. Keller; L. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30, 225-234 (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[45] C. A. Kennedy; M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103 · doi:10.1016/S0168-9274(02)00138-1
[46] P. Kleihues; F. Soylemezoglu; B. Schäuble; B. Scheithauer; P. Burger, Histopathology, classification and grading of gliomas, Glia, 5, 211-221 (1995) · doi:10.1002/glia.440150303
[47] D. A. Knopoff, J. Nieto and L. Urrutia, Numerical simulation of a multiscale cell motility model based on the kinetic theory of active particles, Symmetry, 11 (2019), 1003.
[48] H. Knútsdóttir; E. Pálsson; L. Edelstein-Keshet, Mathematical model of macrophage-facilitated breast cancer cells invasion, Journal of Theoretical Biology, 357, 184-199 (2014) · Zbl 1412.92149 · doi:10.1016/j.jtbi.2014.04.031
[49] N. Kolbe; J. Kat’uchová; N. Sfakianakis; N. Hellmann; M. Lukáčová-Medvid’ová, A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion: The urokinase model, Applied Mathematics and Computation, 273, 353-376 (2016) · Zbl 1410.92049 · doi:10.1016/j.amc.2015.08.023
[50] N. Kolbe; M. Lukáčová-Medvid’ová; N. Sfakianakis; B. Wiebe, Numerical simulation of a contractivity based multiscale cancer invasion model, Multiscale Models in Mechano and Tumor Biology, Lect. Notes Comput. Sci. Eng., Springer, Cham, 122, 73-91 (2017) · doi:10.1007/978-3-319-73371-5_4
[51] M. Krasnianski, K. Painter, C. Surulescu and A. Zhigun, Nonlocal and local models for taxis in cell migration: A rigorous limit procedure, arXiv: 1908.10287v2.
[52] J. Lenz, Global Existence for a Tumor Invasion Model with Repellent Taxis and Therapy, Master thesis, TU Darmstadt, 2019
[53] J. Li; Y. Ke; Y. Wang, Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source, Nonlinear Analysis: Real World Applications, 39, 261-277 (2018) · Zbl 1377.35026 · doi:10.1016/j.nonrwa.2017.07.002
[54] J. Li; Y. Wang, Repulsion effects on boundedness in the higher dimensional fully parabolic attraction-repulsion chemotaxis system, Journal of Mathematical Analysis and Applications, 467, 1066-1079 (2018) · Zbl 1395.35116 · doi:10.1016/j.jmaa.2018.07.051
[55] Y. Li; J. Lankeit, Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion, Nonlinearity, 29, 1564-1595 (2016) · Zbl 1338.35438 · doi:10.1088/0951-7715/29/5/1564
[56] J. Liu; Y. Wang, A quasilinear chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, Mathematical Methods in the Applied Sciences, 40, 2107-2121 (2017) · Zbl 1367.35048 · doi:10.1002/mma.4126
[57] J. Liu, J. Zheng and Y. Wang, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Z. Angew. Math. Phys., 67 (2016), Art. 21, 33 pp. · Zbl 1342.35412
[58] J. Logan; P. White; B. Bentz; J. Powell, Model analysis of spatial patterns in mountain pine beetle outbreaks, Theoretical Population Biology, 53, 236-255 (1998) · Zbl 0941.92030
[59] T. Lorenz; C. Surulescu, On a class of multiscale cancer cell migration models: Well-posedness in less regular function spaces, Mathematical Models and Methods in Applied Sciences, 24, 2383-2436 (2014) · Zbl 1300.92016 · doi:10.1142/S0218202514500249
[60] M. Luca, Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: Is there a connection?, Bulletin of Mathematical Biology, 65, 693-730 (2003) · Zbl 1334.92077
[61] P. K. Maini, Spatial and spatio-temporal patterns in a cell-haptotaxis model, Journal of Mathematical Biology, 27, 507-522 (1989) · Zbl 0716.92004 · doi:10.1007/BF00288431
[62] A. Malandrino; M. Mak; R. Kamm; E. Moeendarbary, Complex mechanics of the heterogeneous extracellular matrix in cancer, Extreme Mechanics Letters, 21, 25-34 (2018)
[63] D. Mallet, Mathematical modelling of the role of haptotaxis in tumour growth and invasion, PhD thesis, Queensland University of Technology.
[64] MATLAB, Version 9.7.0.1216025 (R2019b) Update 1, The MathWorks Inc., Natick, Massachusetts, 2019b.
[65] Y. Matsukado; C. MacCarty; J. Kernohan, The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice, Journal of Neurosurgery, 18, 636-644 (1961)
[66] G. Meral; C. Stinner; C. Surulescu, A multiscale model for acid-mediated tumor invasion: Therapy approaches, Journal of Coupled Systems and Multiscale Dynamics, 3, 135-142 (2015)
[67] G. Meral; C. Stinner; C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discrete Contin. Dyn. Syst. Ser. B, 20, 189-213 (2015) · Zbl 1304.35708 · doi:10.3934/dcdsb.2015.20.189
[68] N. Mizoguchi; P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 851-875 (2014) · Zbl 1302.35075 · doi:10.1016/j.anihpc.2013.07.007
[69] C. Morales-Rodrigo; J. I. Tello, Global existence and asymptotic behavior of a tumor angiogenesis model with chemotaxis and haptotaxis, Mathematical Models and Methods in Applied Sciences, 24, 427-464 (2014) · Zbl 1293.35043 · doi:10.1142/S0218202513500553
[70] J. Nieto; L. Urrutia, A multiscale model of cell mobility: From a kinetic to a hydrodynamic description, Journal of Mathematical Analysis and Applications, 433, 1055-1071 (2016) · Zbl 1354.92010 · doi:10.1016/j.jmaa.2015.08.042
[71] M. Orme; M. Chaplain, A mathematical model of the first steps of tumour-related angiogenesis: Capillary sprout formation and secondary branching, Mathematical Medicine and Biology, 13, 73-98 (1996) · Zbl 0849.92009
[72] K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, Journal of Theoretical Biology, 481, 162-182 (2019) · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[73] K. J. Painter; P. K. Maini; H. G. Othmer, Development and applications of a model for cellular response to multiple chemotactic cues, Journal of Mathematical Biology, 41, 285-314 (2000) · Zbl 0969.92003 · doi:10.1007/s002850000035
[74] P. Y. H. Pang; Y. Wang, Global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Journal of Differential Equations, 263, 1269-1292 (2017) · Zbl 1364.35121 · doi:10.1016/j.jde.2017.03.016
[75] P. Y. H. Pang; Y. Wang, Global boundedness of solutions to a chemotaxis-haptotaxis model with tissue remodeling, Mathematical Models and Methods in Applied Sciences, 28, 2211-2235 (2018) · Zbl 1416.35052 · doi:10.1142/S0218202518400134
[76] P. Y. H. Pang; Y. Wang, Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis-haptotaxis, Mathematical Models and Methods in Applied Sciences, 29, 1387-1412 (2019) · Zbl 1427.35295 · doi:10.1142/S0218202519500246
[77] L. Pareschi; G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyperbolic systemswith relaxation, J. Sci. Comput., 25, 129-155 (2005) · Zbl 1203.65111 · doi:10.1007/s10915-004-4636-4
[78] J. R. Potts; M. A. Lewis, Spatial memory and taxis-driven pattern formation in model ecosystems, Bulletin of Mathematical Biology, 81, 2725-2747 (2019) · Zbl 1417.92217 · doi:10.1007/s11538-019-00626-9
[79] N. Sfakianakis; N. Kolbe; M. Lukáčová-Medvid’ová, A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations, Bull. Math. Biol., 79, 209-235 (2016) · Zbl 1373.92068 · doi:10.1007/s11538-016-0233-6
[80] N. Sfakianakis; A. Madzvamuse; M. A. J. Chaplain, A hybrid multiscale model for cancer invasion of the extracellular matrix, Multiscale Model Sim., 18, 824-850 (2020) · Zbl 1443.92080 · doi:10.1137/18M1189026
[81] A. Silchenko and P. Tass, Mathematical modeling of chemotaxis and glial scarring around implanted electrodes, New Journal of Physics, 17 (2015), 023009. · Zbl 1452.92013
[82] C. Stinner; C. Surulescu; G. Meral, A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA J. Appl. Math., 80, 1300-1321 (2015) · Zbl 1328.35254 · doi:10.1093/imamat/hxu055
[83] C. Stinner; C. Surulescu; A. Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Math. Models Methods Appl. Sci., 26, 2163-2201 (2016) · Zbl 1348.35282 · doi:10.1142/S021820251640011X
[84] C. Stinner; C. Surulescu; M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46, 1969-2007 (2014) · Zbl 1301.35189 · doi:10.1137/13094058X
[85] M. Stubbs; P. McSheehy; J. Griffiths; L. Bashford, Causes and consequences of tumour acidity and implications for treatment, Molecular Medicine Today, 6, 15-19 (2000) · doi:10.1016/S1357-4310(99)01615-9
[86] C. Surulescu and M. Winkler, Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more), European Journal of Applied Mathematics, in print, arXiv: 1904.11210.
[87] S. Takumi; J. Verdone; J. Huang; U. Kahlert; J. Hernandez; G. Torga; J. Zarif; T. Epstein; R. Gatenby; A. McCartney; J. Elisseeff; S. Mooney; S. An; K. Pienta, Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells, Oncotarget, 6, 130-143 (2015)
[88] Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, Journal of Mathematical Analysis and Applications, 354, 60-69 (2009) · Zbl 1160.92027 · doi:10.1016/j.jmaa.2008.12.039
[89] Y. Tao; C. Cui, A density-dependent chemotaxis-haptotaxis system modeling cancer invasion, Journal of Mathematical Analysis and Applications, 367, 612-624 (2010) · Zbl 1186.92026 · doi:10.1016/j.jmaa.2010.02.015
[90] Y. Tao; M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21, 2221-2238 (2008) · Zbl 1160.35431 · doi:10.1088/0951-7715/21/10/002
[91] Y. Tao; M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43, 685-704 (2011) · Zbl 1259.35210 · doi:10.1137/100802943
[92] Y. Tao; M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM Journal on Mathematical Analysis, 47, 4229-4250 (2015) · Zbl 1328.35103 · doi:10.1137/15M1014115
[93] Y. Tao; M. Winkler, A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production, Commun. Pure Appl. Anal., 18, 2047-2067 (2019) · Zbl 1412.35181 · doi:10.3934/cpaa.2019092
[94] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. · Zbl 0383.35057
[95] M. Van der Heiden; L. Cantley; C. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation, Science, 324, 1029-1033 (2009)
[96] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing, 13, 631-644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[97] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, Journal of Computational Physics, 32, 101-136 (1979) · Zbl 1364.65223
[98] D. Vig; C. Wolgemuth, Spatiotemporal evolution of erythema migrans, the hallmark rash of lyme disease, Biophysical Journal, 106, 763-768 (2014)
[99] Y. Wang, Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Applied Mathematics Letters, 59, 122-126 (2016) · Zbl 1381.35195 · doi:10.1016/j.aml.2016.03.019
[100] Y. Wang, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Journal of Differential Equations, 260, 1975-1989 (2016) · Zbl 1332.35152 · doi:10.1016/j.jde.2015.09.051
[101] Y. Wang; Y. Ke, Large time behavior of solution to a fully parabolic chemotaxis-haptotaxis model in higher dimensions, Journal of Differential Equations, 260, 6960-6988 (2016) · Zbl 1336.35070 · doi:10.1016/j.jde.2016.01.017
[102] B. A. Webb; M. Chimenti; M. P. Jacobson; D. L. Barber, Dysregulated pH: A perfect storm for cancer progression, Nature Reviews Cancer, 11, 671-677 (2011) · doi:10.1038/nrc3110
[103] M. Winkler, Singular structure formation in a degenerate haptotaxis model involving myopic diffusion, Journal de Mathématiques Pures et Appliquées, 112, 118-169 (2018) · Zbl 1391.35065 · doi:10.1016/j.matpur.2017.11.002
[104] M. Winkler; C. Surulescu, Global weak solutions to a strongly degenerate haptotaxis model, Comm. Math. Sci., 15, 1581-1616 (2017) · Zbl 1390.35164 · doi:10.4310/CMS.2017.v15.n6.a5
[105] T. Xiang; J. Zheng, A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source, Nonlinearity, 32, 4890-4911 (2019) · Zbl 1425.35110 · doi:10.1088/1361-6544/ab41d5
[106] G.-F. Xiong and R. Xu, Function of cancer cell-derived extracellular matrix in tumor progression, Journal of Cancer Metastasis and Treatment, 2 (2016), 357-364.
[107] P. Zheng; C. Mu; X. Song, On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion, Discr. Cont. Dyn. Syst. A, 36, 1737-1757 (2016) · Zbl 1334.35112 · doi:10.3934/dcds.2016.36.1737
[108] P.-P. Zheng; L.-A. Severijnen; M. van der Weiden; R. Willemsen; J. Kros, Cell proliferation and migration are mutually exclusive cellular phenomena in vivo: Implications for cancer therapeutic strategies, Cell Cycle, 8, 950-951 (2009) · doi:10.4161/cc.8.6.7851
[109] A. Zhigun; C. Surulescu; A. Hunt, A strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypothesis, Math Meth Appl Sci., 41, 2403-2428 (2018) · Zbl 1390.35383 · doi:10.1002/mma.4749
[110] A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Z. Angew. Math. Phys., 67 (2016), Art. 146, 29 pp. · Zbl 1359.35205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.