×

A mountain-pass theorem for asymptotically conical self-expanders. (English) Zbl 1539.53103

Summary: We develop a min-max theory for asymptotically conical self-expanders of mean curvature flow. In particular, we show that given two distinct strictly stable self-expanders that are asymptotic to the same cone and bound a domain, there exists a new asymptotically conical self-expander trapped between the two.

MSC:

53E10 Flows related to mean curvature
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
35J20 Variational methods for second-order elliptic equations
35J93 Quasilinear elliptic equations with mean curvature operator

References:

[1] Agol, I.; Marques, FC; Neves, A., Min-max theory and the energy of links, J. Am. Math. Soc., 29, 2, 561-578 (2016) · Zbl 1335.57009 · doi:10.1090/jams/835
[2] Angenent, SB; Ilmanen, T.; Chopp, DL, A computed example of non-uniqueness of mean curvature flow in \(\mathbb{R}^3\), Commun. Partial Differ. Equ., 20, 11-12, 1937-1958 (1995) · doi:10.1080/03605309508821158
[3] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, Vol. 129. Academic Press, Inc., Boston (1988) · Zbl 0647.46057
[4] Bernstein, J., Wang, L.: The space of asymptotically conical self-expanders of mean curvature flow. arXiv:1712.04366 (2017) · Zbl 1470.53077
[5] Bernstein, J., Wang, L.: Smooth compactness for spaces of asymptotically conical self-expanders of mean curvature flow. Int. Math. Res. Not. IMRN 2021(12), 9016-9044 (2021) · Zbl 1490.53107
[6] Bernstein, J., Wang, L.: An integer degree for asymptotically conical self-expanders. arXiv:1807.06494 (2018)
[7] Bernstein, J., Wang, L.: Topological uniqueness for self-expanders of small entropy. arXiv:1902.02642 (2019)
[8] Bernstein, J., Wang, L.: Relative expander entropy in the presence of a two-sided obstacle and applications. arXiv:1906.07863 (2019) · Zbl 1489.53121
[9] Carlotto, A.; De Lellis, C., Min-max embedded geodesic lines in asymptotically conical surfaces, J. Differ. Geom., 112, 3, 411-445 (2019) · Zbl 1420.53049 · doi:10.4310/jdg/1563242470
[10] Chambers, G.; Liokumovich, Y., Existence of minimal hypersurfaces in complete manifolds of finite volume, Invent. Math., 219, 1, 179-217 (2020) · Zbl 1475.53066 · doi:10.1007/s00222-019-00903-3
[11] Chodosh, O.; Mantoulidis, C., Minimal surfaces and the Allen-Cahn equation on \(3\)-manifolds: index, multiplicity, and curvature estimates, Ann. Math. (2), 191, 1, 213-328 (2020) · Zbl 1431.49045 · doi:10.4007/annals.2020.191.1.4
[12] Colding, T.H., De Lellis, C.: The Min-Max Construction of Minimal Surfaces. Surveys in Differential Geometry, Vol. VIII (Boston, MA, 2002). International Press, Somerville (2003) · Zbl 1051.53052
[13] Colding, TH; Gabai, D.; Ketover, D., On the classification of Heegaard splittings, Duke Math. J., 167, 15, 2833-2856 (2018) · Zbl 1403.57013 · doi:10.1215/00127094-2018-0023
[14] De Lellis, C.; Ramic, J., Min-max theory for minimal hypersurfaces with boundary, Ann. Inst. Fourier (Grenoble), 68, 5, 1909-1986 (2018) · Zbl 1408.53079 · doi:10.5802/aif.3200
[15] De Lellis, C.; Tasnady, D., The existence of embedded minimal hypersurfaces, J. Differ. Geom., 95, 3, 355-388 (2013) · Zbl 1284.53057 · doi:10.4310/jdg/1381931732
[16] Ding, Q., Minimal cones and self-expanding solutions for mean curvature flows, Math. Ann., 376, 359-405 (2020) · Zbl 1432.53133 · doi:10.1007/s00208-019-01941-1
[17] Ecker, K.; Huisken, G., Mean curvature evolution of entire graphs, Ann. of Math. (2), 130, 3, 453-471 (1989) · Zbl 0696.53036 · doi:10.2307/1971452
[18] Ecker, K.; Huisken, G., Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105, 547-569 (1991) · Zbl 0707.53008 · doi:10.1007/BF01232278
[19] Gaspar, P.; Guaraco, M., The Weyl law for the phase transition spectrum and density of limit interfaces, Geom. Funct. Anal., 29, 2, 382-410 (2019) · Zbl 1416.53009 · doi:10.1007/s00039-019-00489-1
[20] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 Edition. Classics in Mathematics. Springer-Verlag, Berlin (2001) · Zbl 1042.35002
[21] Guang, Q., Li, M., Wang, Z., Zhou, X.: Min-max theory for free boundary minimal hypersurfaces II—general Morse index bounds and applications (preprint). Math. Ann. 379(3-4), 1395-1424 (2021) · Zbl 1466.53074
[22] Heinonen, J.: Lectures on Lipschitz analysis. Report, University of Jyväskylä Department of Mathematics and Statistics, 100. University of Jyväskylä, Jyväskylä (2005) · Zbl 1086.30003
[23] Ilmanen, T.: Lectures on mean curvature flow and related equations, unpublished notes. https://people.math.ethz.ch/ ilmanen/papers/notes.ps · Zbl 0759.53035
[24] Irie, K.; Marques, FC; Neves, A., Density of minimal hypersurfaces for generic metrics, Ann. Math. (2), 187, 3, 963-972 (2018) · Zbl 1387.53083 · doi:10.4007/annals.2018.187.3.8
[25] Ketover, D., Liokumovich, Y., Song, A.: On the existence of minimal Heegaard surfaces. arXiv:1911.07161 (2019)
[26] Ketover, D.; Zhou, X., Entropy of closed surfaces and min-max theory, J. Differ. Geom., 110, 1, 31-71 (2018) · Zbl 1396.53004 · doi:10.4310/jdg/1536285626
[27] Liokumovich, Y.; Marques, FC; Neves, A., Weyl law for the volume spectrum, Ann. Math. (2), 187, 3, 933-961 (2018) · Zbl 1390.53034 · doi:10.4007/annals.2018.187.3.7
[28] Marques, FC; Neves, A., Min-max theory and the Willmore conjecture, Ann. Math. (2), 179, 2, 683-782 (2014) · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[29] Marques, FC; Neves, A., Morse index and multiplicity of min-max minimal hypersurfaces, Camb. J. Math., 4, 4, 463-511 (2016) · Zbl 1367.49036 · doi:10.4310/CJM.2016.v4.n4.a2
[30] Marques, FC; Neves, A., Existence of infinitely many minimal hypersurfaces in positive Ricci curvature, Invent. Math., 209, 2, 577-616 (2017) · Zbl 1390.53064 · doi:10.1007/s00222-017-0716-6
[31] Marques, FC; Neves, A.; Song, A., Equidistribution of minimal hypersurfaces for generic metrics, Invent. Math., 216, 2, 421-443 (2019) · Zbl 1419.53061 · doi:10.1007/s00222-018-00850-5
[32] Milnor, J.: Lectures on the \(h\)-cobordism Theorem. Princeton Legacy Library, Vol. 2258. Princeton University Press, Princeton (1965) · Zbl 0161.20302
[33] Montezuma, R., Min-max minimal hypersurfaces in non-compact manifolds, J. Differ. Geom., 103, 3, 475-519 (2016) · Zbl 1377.53081 · doi:10.4310/jdg/1468517502
[34] Montezuma, R.: A mountain pass theorem for minimal hypersurfaces with fixed boundary. Calc. Var. Partial Differential Equations 59(6), Paper No. 188, 30 pp. (2020) · Zbl 1461.53048
[35] Morgan, F., Ros, A.: Stable constant mean curvature hypersurfaces are area minimizing in small \(L^1\)-neighborhoods. Interfaces Free Bound. 12(2), 151-155 (2010) · Zbl 1195.49055
[36] Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes, Vol. 27. Princeton University Press, Princeton (1981) · Zbl 0462.58003
[37] Rivière, T., A viscosity method in the min-max theory of minimal surfaces, Publ. Math. Inst. Hautes Études Sci., 126, 177-246 (2017) · Zbl 1387.53084 · doi:10.1007/s10240-017-0094-z
[38] Schoen, R.; Simon, L., Regularity of stable minimal hypersurfaces, Commun. Pure Appl. Math., 34, 6, 741-797 (1981) · Zbl 0497.49034 · doi:10.1002/cpa.3160340603
[39] Simon, L.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983) · Zbl 0546.49019
[40] Smith, F.: On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric. Ph.D. Thesis, University of Melbourne, Melbourne (1982)
[41] Solomon, B.; White, B., A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals, Indiana Univ. Math. J., 38, 3, 683-691 (1989) · Zbl 0711.49059 · doi:10.1512/iumj.1989.38.38032
[42] Song, A.: Existence of infinitely many minimal hypersurfaces in closed manifolds. arXiv:1806.08816 (2018)
[43] Wang, L., Uniqueness of self-similar shrinkers with asymptotically conical ends, J. Am. Math. Soc., 27, 3, 613-638 (2014) · Zbl 1298.53069 · doi:10.1090/S0894-0347-2014-00792-X
[44] Wang, Z.: Existence of infinitely many free boundary minimal hypersurfaces. arXiv:2001.04674 (2020)
[45] White, B., The space of \(m\)-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J., 36, 3, 567-602 (1987) · Zbl 0770.58005 · doi:10.1512/iumj.1987.36.36031
[46] White, B., A strong minimax property of nondegenerate minimal submanifolds, J. Reine Angew. Math., 457, 203-218 (1994) · Zbl 0808.49037
[47] White, B., The maximum principle for minimal varieties of arbitrary codimension, Commun. Anal. Geom., 18, 3, 421-432 (2010) · Zbl 1226.53061 · doi:10.4310/CAG.2010.v18.n3.a1
[48] Zhou, X.: On the multiplicity one conjecture in min-max theory. Ann. of Math. (2) 192(3), 767-820 (2020) · Zbl 1461.53051
[49] Zhou, X.; Zhu, J., Min-max theory for constant mean curvature hypersurfaces, Invent. Math., 218, 2, 441-490 (2019) · Zbl 1432.53086 · doi:10.1007/s00222-019-00886-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.