×

Brans-Dicke cosmology with a \(\Lambda\)-term: a possible solution to \(\Lambda\)CDM tensions. (English) Zbl 1510.83107

Summary: We present a full-fledged analysis of Brans-Dicke cosmology with a cosmological constant and cold dark matter (BD-\(\Lambda\)CDM for short). We extend the scenarios where the current cosmological value of the BD-field is restricted by the local astrophysical domain to scenarios where that value is fixed only by the cosmological observations, which should be more natural in view of the possible existence of local screening mechanism. Our analysis includes both the background and perturbations equations in different gauges. We find that the BD-\(\Lambda\)CDM is favored by the overall cosmological data as compared to the concordance GR-\(\Lambda\)CDM model, namely data on distant supernovae, cosmic chronometers, local measurements of the Hubble parameter, baryonic acoustic oscillations, large-scale structure formation and the cosmic microwave background under full Planck 2018 CMB likelihood. We also test the impact of strong and weak-lensing data on our results, which can be significant. We find that the BD-\(\Lambda\)CDM can mimic effective quintessence with a significance of about 3.0–3.5\(\sigma\) c.l. (depending on the lensing datasets). The fact that the BD-\(\Lambda\)CDM behaves effectively as a running vacuum model (RVM) when viewed from the GR perspective helps to alleviate some of the existing tensions with the data, such as the \(\sigma_8\) excess predicted by GR-\(\Lambda\)CDM. On the other hand, the BD-\(\Lambda\)CDM model has a crucial bearing on the acute \(H_0\)-tension with the local measurements, which is rendered virtually harmless owing to the small increase of the effective value of the gravitational constant with the expansion. The simultaneous alleviation of the two tensions is a most remarkable feature of BD-gravity with a cosmological constant in the light of the current observations, and hence goes in support of BD-\(\Lambda\)CDM against GR-\(\Lambda\)CDM.

MSC:

83F05 Relativistic cosmology
83C56 Dark matter and dark energy
81T20 Quantum field theory on curved space or space-time backgrounds
81T32 Matrix models and tensor models for quantum field theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
81V45 Atomic physics
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
81V80 Quantum optics
85A15 Galactic and stellar structure

Software:

CLASS; GetDist

References:

[1] Riess A G et al 1998 Observational evidence from supernovae for an accelerating universe and a cosmological constant Astron. J.116 1009-38 · doi:10.1086/300499
[2] Perlmutter S et al 1999 Measurements of Ω and Λ from 42 high‐redshift supernovae Astrophys. J.517 565-86 · Zbl 1368.85002 · doi:10.1086/307221
[3] Aghanim N et al 2018 Planck 2018 results. VI. Cosmological parameters (arXiv:1807.06209)
[4] Peebles P J E 1993 Principles of Physical Cosmology (Princeton, NJ: Princeton University Press) · Zbl 1422.83022
[5] Weinberg S 1989 The cosmological constant problem Rev. Mod. Phys.61 1-23 · Zbl 1129.83361 · doi:10.1103/revmodphys.61.1
[6] Solà J 2013 Cosmological constant and vacuum energy: old and new ideas J. Phys.: Conf. Ser.453 012015 · doi:10.1088/1742-6596/453/1/012015
[7] Sahni V and Starobinsky A 2000 The case for a positive cosmological Λ-term Int. J. Mod. Phys. D 09 373-443 · doi:10.1142/s0218271800000542
[8] Peebles P J E and Ratra B 2003 The cosmological constant and dark energy Rev. Mod. Phys.75 559-606 · Zbl 1205.83082 · doi:10.1103/revmodphys.75.559
[9] Padmanabhan T 2003 Cosmological constant-the weight of the vacuum Phys. Rep.380 235-320 · Zbl 1027.83544 · doi:10.1016/s0370-1573(03)00120-0
[10] Copeland E J, Sami M and Tsujikawa S 2006 Dynamics of dark energy Int. J. Mod. Phys. D 15 1753-935 · Zbl 1203.83061 · doi:10.1142/s021827180600942x
[11] Amendola L and Tsujikawa S 2015 Dark Energy: Theory and Observations (Cambridge: Cambridge University Press)
[12] Dolgov A D 1982 The Very Early Universe ed G Gibbons, S W Hawking and S T Tiklos (Cambridge: Cambridge University Press)
[13] Abbott L F 1985 A mechanism for reducing the value of the cosmological constant Phys. Lett. B 150 427-30 · doi:10.1016/0370-2693(85)90459-9
[14] Peccei R D, Solà J and Wetterich C 1987 Adjusting the cosmological constant dynamically: Cosmons and a new force weaker than gravity Phys. Lett. B 195 183-90 · doi:10.1016/0370-2693(87)91191-9
[15] Barr S M 1987 Attempt at a classical cancellation of the cosmological constant Phys. Rev. D 36 1691 · doi:10.1103/physrevd.36.1691
[16] Ford L H 1987 Cosmological-constant damping by unstable scalar fields Phys. Rev. D 35 2339 · doi:10.1103/physrevd.35.2339
[17] Overduin J and Cooperstock F 1998 Evolution of the scale factor with a variable cosmological term Phys. Rev. D 58 043506 · doi:10.1103/physrevd.58.043506
[18] Özer M and Taha M O 1986 A possible solution to the main cosmological problems Phys. Lett. B 171 363-5 · doi:10.1016/0370-2693(86)91421-8
[19] Özer M and Taha M O 1987 A model of the universe free of cosmological problems Nucl. Phys. B 287 776-96 · doi:10.1016/0550-3213(87)90128-3
[20] Bertolami O 1986 Time-dependent cosmological term Nuovo Cimento B 93 36-42 · doi:10.1007/bf02728301
[21] Freese K, Adams F C, Frieman J A and Mottola E 1987 Cosmology with decaying vacuum energy Nucl. Phys. B 287 797-814 · doi:10.1016/0550-3213(87)90129-5
[22] Carvalho J C, Lima J A S and Waga I 1992 Cosmological consequences of a time-dependent Λ term Phys. Rev. D 46 2404-7 · doi:10.1103/physrevd.46.2404
[23] Steinhardt P J 1997 Critical Problems in Physics. Cosmological Challenges for the 21st Century (Princeton, NJ: Princeton University Press)
[24] Steinhardt P J 2003 A quintessential introduction to dark energy Phil. Trans. R. Soc. A 361 2497-513 · Zbl 1055.85504 · doi:10.1098/rsta.2003.1290
[25] Verde L, Treu T and Riess A G 2019 Tensions between the early and late Universe Nat Astron3 891-5 · doi:10.1038/s41550-019-0902-0
[26] Macaulay E, Wehus I K and Eriksen H K 2013 Lower growth rate from recent redshift space distortion measurements than expected from Planck Phys. Rev. Lett.111 161301 · doi:10.1103/physrevlett.111.161301
[27] Nesseris S, Pantazis G and Perivolaropoulos L 2017 Tension and constraints on modified gravity parametrizations of Geff(z) from growth rate and Planck data Phys. Rev. D 96 023542 · doi:10.1103/physrevd.96.023542
[28] Di Valentino E et al 2020 Cosmology intertwined II: the Hubble constant tension (arXiv:2008.11284)
[29] Di Valentino E et al 2020 Cosmology Intertwined III: fσ8 and S8 (arXiv:2008.11285)
[30] Riess A G et al 2016 A 2.4 · doi:10.3847/0004-637X/826/1/56
[31] Riess A G et al 2018 New parallaxes of galactic Cepheids from spatially scanning theHubble space telescope: implications for the Hubble constant Astrophys. J.855 136 · doi:10.3847/1538-4357/aaadb7
[32] Riess A G, Casertano S, Yuan W, Macri L M and Scolnic D 2019 Large Magellanic Cloud Cepheid standards provide a 1 · doi:10.3847/1538-4357/ab1422
[33] Reid M J, Pesce D W and Riess A G 2019 An improved distance to NGC 4258 and its implications for the Hubble constant Astrophys. J.886 L27 · doi:10.3847/2041-8213/ab552d
[34] Wong K C et al 2019 H0LiCOW XIII. A 2.4 · doi:10.1093/mnras/stz3094
[35] Kazantzidis L and Perivolaropoulos L 2018 Evolution of the fσ8 tension with the Planck15/ΛCDM determination and implications for modified gravity theories Phys. Rev. D 97 103503 · doi:10.1103/physrevd.97.103503
[36] Di Valentino E and Bridle S 2018 Exploring the tension between current cosmic microwave background and cosmic shear data Symmetry10 585 · doi:10.3390/sym10110585
[37] Solà Peracaula J 2018 Tensions in the ΛCDM and vacuum dynamics Int. J. Mod. Phys. A 33 1844009 · doi:10.1142/s0217751x18440098
[38] Skara F and Perivolaropoulos L 2020 Tension of the EG statistic and redshift space distortion data with the Planck—ΛCDM model and implications for weakening gravity Phys. Rev. D 101 063521 · doi:10.1103/physrevd.101.063521
[39] Gil-Marín H, Percival W J, Verde L, Brownstein J R, Chuang C-H, Kitaura F-S, Rodríguez-Torres S A and Olmstead M D 2017 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies Mon. Not. R. Astron. Soc.465 1757-88 · doi:10.1093/mnras/stw2679
[40] Hildebrandt H et al 2017 KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing Mon. Not. R. Astron. Soc.465 1454 · doi:10.1093/mnras/stw2805
[41] Joudaki S et al 2018 KiDS-450 + 2dFLenS: cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering Mon. Not. R. Astron. Soc.474 4894-924 · doi:10.1093/mnras/stx2820
[42] Köhlinger F, Joachimi B, Asgari M, Viola M, Joudaki S and Tröster T 2019 A Bayesian quantification of consistency in correlated data sets Mon. Not. R. Astron. Soc.484 3126-53 · doi:10.1093/mnras/stz132
[43] Wright A H, Hildebrandt H, van den Busch J L, Heymans C, Joachimi B, Kannawadi A and Kuijken K 2020 KiDS + VIKING-450: improved cosmological parameter constraints from redshift calibration with self-organising maps Astron. Astrophys.640 L14 · doi:10.1051/0004-6361/202038389
[44] Milne E A 1935 Relativity, gravitation and world-structure Math. Gaz.19 299-301 · JFM 61.0012.02 · doi:10.2307/3608035
[45] Dirac P A M 1937 The cosmological constants Nature139 323 · Zbl 0016.18504 · doi:10.1038/139323a0
[46] Dirac P A M 1938 A new basis for cosmology Proc. R. Soc. A 165 199-208 · Zbl 0018.28801 · doi:10.1098/rspa.1938.0053
[47] Jordan P 1937 Die physikalischen Weltkonstanten Naturwissenschaften25 513-7 · Zbl 0017.04202 · doi:10.1007/bf01498368
[48] Jordan P 1939 Über die kosmologische Konstanz der Feinstrukturkonstanten Z. Phys.113 660-2 · Zbl 0022.09604 · doi:10.1007/bf01340095
[49] Jordan P 1955 Schwerkraft und Weltall vol 107 (Braunschweig: Vieweg) · Zbl 0065.20703
[50] Fierz M 1956 On the physical interpretation of P Jordan’s extended theory of gravitation Helv. Phys. Acta29 128-34 · Zbl 0071.22007
[51] Brans C and Dicke R H 1961 Mach’s principle and a relativistic theory of gravitation Phys. Rev.124 925 · Zbl 0103.21402 · doi:10.1103/physrev.124.925
[52] Brans C H 1962 Mach’s principle and a relativistic theory of gravitation. II Phys. Rev.125 2194 · Zbl 0173.54005 · doi:10.1103/physrev.125.2194
[53] Dicke R H 1962 Mach’s principle and Invariance under transformation of units Phys. Rev.125 2163 · Zbl 0113.45101 · doi:10.1103/physrev.125.2163
[54] Bergmann P G 1968 Comments on the scalar-tensor theory Int. J. Theor. Phys.1 25-36 · doi:10.1007/bf00668828
[55] Nordtvedt K J 1970 Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences Astrophys. J.161 1059-67 · doi:10.1086/150607
[56] Wagoner R V 1970 Scalar-tensor theory and gravitational waves Phys. Rev. D 1 3209 · doi:10.1103/physrevd.1.3209
[57] Horndeski G W 1974 Second-order scalar-tensor field equations in a four-dimensional space Int. J. Theor. Phys.10 363-84 · doi:10.1007/bf01807638
[58] Fujii Y and Maeda K-i. 2007 The Scalar-Tensor Theory of Gravitation(Cambridge Monographs on Mathematical Physics) (Cambridge: Cambridge University Press) · Zbl 1146.83012
[59] Sotiriou T P and Faraoni V 2010 f(R) theories of gravity Rev. Mod. Phys.82 451-97 · Zbl 1205.83006 · doi:10.1103/revmodphys.82.451
[60] Capozziello S and De Laurentis M 2011 Extended theories of gravity Phys. Rep.509 167-321 · doi:10.1016/j.physrep.2011.09.003
[61] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Modified gravity and cosmology Phys. Rep.513 1-189 · doi:10.1016/j.physrep.2012.01.001
[62] Will C M 2014 The confrontation between general relativity and experiment Living Rev. Rel.17 4 · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[63] Solà Peracaula J, Gómez-Valent A and de Cruz Pérez J 2019 Signs of dynamical dark energy in current observations Phys. Dark Universe25 100311 · doi:10.1016/j.dark.2019.100311
[64] Gómez-Valent A, Pettorino V and Amendola L 2020 Update on coupled dark energy and the H0 tension Phys. Rev. D 101 123513 · doi:10.1103/physrevd.101.123513
[65] Solà J and Gómez-Valent A 2015 The Λ̄CDM cosmology: from inflation to dark energy through running ΛΛ̄CDM cosmology: from inflation to dark energy through running Λ Int. J. Mod. Phys. D 24 1541003 · Zbl 1311.83079 · doi:10.1142/s0218271815410035
[66] Gómez-Valent A 2017 Vacuum energy in quantum field theory and cosmology PhD Thesis ICC
[67] Lima J A S, Basilakos S and Solà J 2013 Expansion history with decaying vacuum: a complete cosmological scenario Mon. Not. R. Astron. Soc.431 923-9 · doi:10.1093/mnras/stt220
[68] Perico E, Lima J, Basilakos S and Solà J 2013 Complete cosmic history with a dynamical Λ= Λ (H) term Phys. Rev. D 88 063531 · doi:10.1103/physrevd.88.063531
[69] Solà Peracaula J and Yu H 2020 Particle and entropy production in the running vacuum universe Gen. Relativ. Gravit.52 17 · Zbl 1437.83175 · doi:10.1007/s10714-020-2657-4
[70] Basilakos S, Mavromatos N E and Solà Peracaula J 2020 Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry Phys. Rev. D 101 045001 · doi:10.1103/physrevd.101.045001
[71] Basilakos S, Mavromatos N E and Solà Peracaula J 2020 Quantum anomalies in string-Inspired running vacuum universe: inflation and axion dark matter Phys. Lett. B 803 135342 · Zbl 1434.83167 · doi:10.1016/j.physletb.2020.135342
[72] Moreno-Pulido C and Sola J 2020 Running vacuum in quantum field theory in curved spacetime: renormalizing ρvac without ∼ m4 terms Eur. Phys. J. C 80 692 · doi:10.1140/epjc/s10052-020-8238-6
[73] Solà Peracaula J, de Cruz Pérez J and Gómez-Valent A 2018 Dynamical dark energy vs. Λ = const in light of observations Europhys. Lett.121 39001 · doi:10.1209/0295-5075/121/39001
[74] Solà Peracaula J, de Cruz Pérez J and Gómez-Valent A 2018 Possible signals of vacuum dynamics in the Universe Mon. Not. R. Astron. Soc.478 4357-73 · doi:10.1093/mnras/sty1253
[75] Gómez-Valent A and Solà Peracaula J 2018 Density perturbations for running vacuum: a successful approach to structure formation and to the σ8-tension Mon. Not. R. Astron. Soc.478 126-45 · doi:10.1093/mnras/sty1028
[76] Gómez-Valent A and Solà J 2017 Relaxing the σ8-tension through running vacuum in the Universe Europhys. Lett.120 39001 · doi:10.1209/0295-5075/120/39001
[77] Solà J, Gómez-Valent A and de Cruz Pérez J 2017 The H0 tension in light of vacuum dynamics in the Universe Phys. Lett. B 774 317-24 · doi:10.1016/j.physletb.2017.09.073
[78] Solà J, Gómez-Valent A and de Cruz Pérez J 2017 First evidence of running cosmic vacuum: challenging the concordance model Astrophys. J.836 43 · doi:10.3847/1538-4357/836/1/43
[79] Solà J, Gómez-Valent A and de Cruz Pérez J 2017 Dynamical dark energy: scalar fields and running vacuum Mod. Phys. Lett. A 32 1750054 · doi:10.1142/s0217732317500547
[80] Solà J, Gómez-Valent A and de Cruz Pérez J 2015 Hints of dynamical vacuum energy in the expanding Universe Astrophys. J.811 L14 · doi:10.1088/2041-8205/811/1/l14
[81] Geng C-Q, Lee C-C and Yin L 2017 Constraints on running vacuum model with H(z) and fσ8 J. Cosmol. Astropart. Phys. JCAP08(2017)032 · doi:10.1088/1475-7516/2017/08/032
[82] Rezaei M, Malekjani M and Solà J 2019 Can dark energy be expressed as a power series of the Hubble parameter? Phys. Rev. D 100 023539 · doi:10.1103/physrevd.100.023539
[83] Geng C-Q, Lee C-C and Yin L 2020 Constraints on a special running vacuum model Eur. Phys. J. C 80 69 · doi:10.1140/epjc/s10052-020-7653-z
[84] Gómez-Valent A, Solà J and Basilakos S 2015 Dynamical vacuum energy in the expanding Universe confronted with observations: a dedicated study J. Cosmol. Astropart. Phys. JCAP01(2015)004 · doi:10.1088/1475-7516/2015/01/004
[85] Gómez-Valent A and Solà J 2015 Vacuum models with a linear and a quadratic term in H: structure formation and number counts analysis Mon. Not. R. Astron. Soc.448 2810-21 · doi:10.1093/mnras/stv209
[86] Solà Peracaula J, Basilakos S and Plionis M 2011 Hubble expansion and structure formation in the ‘running FLRW model’ of the cosmic evolution J. Cosmol. Astropart. Phys. JCAP08(2011)007 · doi:10.1088/1475-7516/2011/08/007
[87] Basilakos S, Plionis M and Solà J 2009 Hubble expansion & structure formation in time varying vacuum models Phys. Rev. D 80 083511 · doi:10.1103/physrevd.80.083511
[88] Peracaula J S 2018 Brans-Dicke gravity: from Higgs physics to (dynamical) dark energy Int. J. Mod. Phys. D 27 1847029 · doi:10.1142/s0218271818470296
[89] de Cruz Pérez J and Solà Peracaula J 2018 Brans-Dicke cosmology mimicking running vacuum Mod. Phys. Lett. A 33 1850228 · Zbl 1404.83100 · doi:10.1142/s0217732318502280
[90] Solà Peracaula J, Gómez-Valent A, de Cruz Pérez J and Moreno-Pulido C 2019 Brans-Dicke gravity with a cosmological constant smoothes out ΛCDM tensions Astrophys. J.886 L6 · doi:10.3847/2041-8213/ab53e9
[91] Zhao G-B et al 2017 Dynamical dark energy in light of the latest observations Nat. Astron.1 627-32 · doi:10.1038/s41550-017-0216-z
[92] Valentino E D, Melchiorri A and Silk J 2020 Cosmological constraints in extended parameter space from the Planck 2018 Legacy release J. Cosmol. Astropart. Phys. JCAP01(2020)013 · doi:10.1088/1475-7516/2020/01/013
[93] Di Valentino E, Linder E V and Melchiorri A 2018 Vacuum phase transition solves the H0 tension Phys. Rev. D 97 043528 · doi:10.1103/physrevd.97.043528
[94] Di Valentino E, Melchiorri A and Mena O 2017 Can interacting dark energy solve the H0 tension? Phys. Rev. D 96 043503 · doi:10.1103/physrevd.96.043503
[95] Di Valentino E, Melchiorri A, Linder E V and Silk J 2017 Constraining dark energy dynamics in extended parameter space Phys. Rev. D 96 023523 · doi:10.1103/physrevd.96.023523
[96] Di Valentino E, Melchiorri A and Silk J 2016 Reconciling Planck with the local value of H 0 in extended parameter space Phys. Lett. B 761 242-6 · doi:10.1016/j.physletb.2016.08.043
[97] Martinelli M, Hogg N B, Peirone S, Bruni M and Wands D 2019 Constraints on the interacting vacuum-geodesic CDM scenario Mon. Not. R. Astron. Soc.488 3423-38 · doi:10.1093/mnras/stz1915
[98] Salvatelli V, Said N, Bruni M, Melchiorri A and Wands D 2014 Indications of a late-time interaction in the dark sector Phys. Rev. Lett.113 181301 · doi:10.1103/physrevlett.113.181301
[99] Costa A A, Xu X-D, Wang B and Abdalla E 2017 Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data J. Cosmol. Astropart. Phys. JCAP01(2017)028 · doi:10.1088/1475-7516/2017/01/028
[100] Anand S, Chaubal P, Mazumdar A and Mohanty S 2017 Cosmic viscosity as a remedy for tension between PLANCK and LSS data J. Cosmol. Astropart. Phys. JCAP11(2017)005 · doi:10.1088/1475-7516/2017/11/005
[101] An R, Feng C and Wang B 2018 Relieving the tension between weak lensing and cosmic microwave background with interacting dark matter and dark energy models J. Cosmol. Astropart. Phys. JCAP02(2018)038 · doi:10.1088/1475-7516/2018/02/038
[102] Li Y-H, Zhang J-F and Zhang X 2016 Testing models of vacuum energy interacting with cold dark matter Phys. Rev. D 93 023002 · doi:10.1103/physrevd.93.023002
[103] Li Y-H, Zhang J-F and Zhang X 2014 Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: application of the parametrized post-Friedmann approach Phys. Rev. D 90 123007 · doi:10.1103/physrevd.90.123007
[104] Li Y-H, Zhang J-F and Zhang X 2014 Parametrized post-Friedmann framework for interacting dark energy Phys. Rev. D 90 063005 · doi:10.1103/physrevd.90.063005
[105] Hazra D K, Shafieloo A and Souradeep T 2019 Parameter discordance in Planck CMB and low-redshift measurements: projection in the primordial power spectrum J. Cosmol. Astropart. Phys. JCAP04(2019)036 · doi:10.1088/1475-7516/2019/04/036
[106] Yan S-F, Zhang, Chen J-W, Zhang X-Z, Cai Y-F and Saridakis E N 2020 Interpreting cosmological tensions from the effective field theory of torsional gravity Phys. Rev. D 101 121301 · doi:10.1103/physrevd.101.121301
[107] Liao K, Shafieloo A, Keeley R E and Linder E V 2020 Determining model-independent H 0 and consistency tests Astrophys. J.895 L29 · doi:10.3847/2041-8213/ab8dbb
[108] Wang K and Chen L 2020 Constraints on Newton’s constant from cosmological observations Eur. Phys. J. C 80 570 · doi:10.1140/epjc/s10052-020-8137-x
[109] Jedamzik K and Pogosian L 2020 Relieving the Hubble tension with primordial magnetic fields (arXiv:2004.09487)
[110] Vagnozzi S 2020 New physics in light of the H0 tension: an alternative view Phys. Rev. D 102 023518 · doi:10.1103/physrevd.102.023518
[111] Calderón R, Gannouji R, L’Huillier B and Polarski D 2020 A negative cosmological constant in the dark sector? (arXiv:2008.10237)
[112] Di Valentino E, Melchiorri A, Mena O and Vagnozzi S 2020 Nonminimal dark sector physics and cosmological tensions Phys. Rev. D 101 063502 · doi:10.1103/physrevd.101.063502
[113] Alestas G, Kazantzidis L and Perivolaropoulos L 2020 H0 tension, phantom dark energy, and cosmological parameter degeneracies Phys. Rev. D 101 123516 · doi:10.1103/physrevd.101.123516
[114] Poulin V, Smith T L, Karwal T and Kamionkowski M 2019 Early dark energy can resolve the Hubble tension Phys. Rev. Lett.122 221301 · doi:10.1103/physrevlett.122.221301
[115] Hill J C, McDonough E, Toomey M W and Alexander S 2020 Early dark energy does not restore cosmological concordance Phys. Rev. D 102 043507 · doi:10.1103/physrevd.102.043507
[116] Chudaykin A, Gorbunov D and Nedelko N 2020 Combined analysis of Planck and SPTPol data favors the early dark energy models J. Cosmol. Astropart. Phys. JCAP08(2020)013 · doi:10.1088/1475-7516/2020/08/013
[117] Braglia M, Emond W T, Finelli F, Gumrukcuoglu A E and Koyama K 2020 Unified framework for early dark energy from α-attractors (arXiv:2005.14053)
[118] Umiltà C, Ballardini M, Finelli F and Paoletti D 2015 CMB and BAO constraints for an induced gravity dark energy model with a quartic potential J. Cosmol. Astropart. Phys. JCAP08(2015)017 · doi:10.1088/1475-7516/2015/08/017
[119] Ballardini M, Finelli F, Umiltà C and Paoletti D 2016 Cosmological constraints on induced gravity dark energy models J. Cosmol. Astropart. Phys. JCAP05(2016)067 · doi:10.1088/1475-7516/2016/05/067
[120] Rossi M, Ballardini M, Braglia M, Finelli F, Paoletti D, Starobinsky A A and Umiltà C 2019 Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity Phys. Rev. D 100 103524 · doi:10.1103/physrevd.100.103524
[121] Ballesteros G, Notari A and Rompineve F 2020 The H0 tension: ΔGN vs ΔNeff (arXiv:2004.05049)
[122] Braglia M, Ballardini M, Emond W T, Finelli F, Gumrukcuoglu A E, Koyama K and Paoletti D 2020 Larger value for H0 by an evolving gravitational constant Phys. Rev. D 102 023529 · doi:10.1103/physrevd.102.023529
[123] Ballardini M, Braglia M, Finelli F, Paoletti D, Starobinsky A A and Umiltà C 2020 Scalar-tensor theories of gravity, neutrino physics, and the H0 tension (arXiv:2004.14349)
[124] Bertini N R, Hipólito-Ricaldi W S, de Melo-Santos F and Rodrigues D C 2020 Cosmological framework for renormalization group extended gravity at the action level Eur. Phys. J. C 80 479 · doi:10.1140/epjc/s10052-020-8179-0
[125] Rodrigues D C, Chauvineau B and Piattella O F 2015 Scalar-Tensor gravity with system-dependent potential and its relation with renormalization group extended general relativity J. Cosmol. Astropart. Phys. JCAP09(2015)009 · doi:10.1088/1475-7516/2015/09/009
[126] Misner C W, Thorn K S and Wheeler J A 1974 Gravitation (San Francisco, CA: Freeman)
[127] Solà J, Karimkhani E and Khodam-Mohammadi A 2017 Higgs potential from extended Brans-Dicke theory and the time-evolution of the fundamental constants Class. Quantum Grav.34 025006 · Zbl 1357.83012 · doi:10.1088/1361-6382/34/2/025006
[128] Faraoni V 1998 The ω → ∞ limit of Brans-Dicke theory Phys. Lett. A 245 26-30 · doi:10.1016/s0375-9601(98)00387-9
[129] Faraoni V 1999 Illusions of general relativity in Brans-Dicke gravity Phys. Rev. D 59 084021 · doi:10.1103/physrevd.59.084021
[130] Mathiazhagan C and Johri V B 1984 An inflationary universe in Brans-Dicke theory: a hopeful sign of theoretical estimation of the gravitational constant Class. Quantum Grav.1 L29 · doi:10.1088/0264-9381/1/2/005
[131] La D and Steinhardt P J 1989 Extended inflationary cosmology Phys. Rev. Lett.62 376-8 · doi:10.1103/physrevlett.62.376
[132] Weinberg E J 1989 Some problems with extended inflation Phys. Rev. D 40 3950-9 · doi:10.1103/physrevd.40.3950
[133] Barrow J D and Maeda K-i. 1990 Extended inflationary universes Nucl. Phys. B 341 294-308 · doi:10.1016/0550-3213(90)90272-f
[134] Nariai H 1969 On the Brans solution in the scalar-tensor theory of gravitation Prog. Theor. Phys.42 742-4 · doi:10.1143/ptp.42.742
[135] Endo M and Fukui T 1977 The cosmological term and a modified Brans-Dicke cosmology Gen. Relativ. Gravit.8 833-9 · doi:10.1007/BF00759587
[136] Uehara K and Kim C W 1982 Brans-Dicke cosmology with the cosmological constant Phys. Rev. D 26 2575-9 · doi:10.1103/physrevd.26.2575
[137] Lorenz-Petzold D 1984 Exact Brans-Dicke cosmologies with a cosmological constant Astrophys. Space Sci.100 461-5 · doi:10.1007/bf00651628
[138] Romero C and Barros A 1992 Brans-Dicke cosmology and the cosmological constant: the spectrum of vacuum solutions Astrophys. Space Sci.192 263-74 · doi:10.1007/bf00684484
[139] Tretyakova D A, Shatskiy A A, Novikov I D and Alexeyev S 2012 Nonsingular Brans-Dicke-Λ cosmology Phys. Rev. D 85 124059 · doi:10.1103/physrevd.85.124059
[140] Esposito-Farese G and Polarski D 2001 Scalar-tensor gravity in an accelerating universe Phys. Rev. D 63 063504 · doi:10.1103/physrevd.63.063504
[141] Alsing J, Berti E, Will C M and Zaglauer H 2012 Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity Phys. Rev. D 85 064041 · doi:10.1103/physrevd.85.064041
[142] Özer H and Delice Ö 2018 Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light Class. Quantum Grav.35 065002 · Zbl 1386.83114 · doi:10.1088/1361-6382/aaa633
[143] Faraoni V 2004 Cosmology in Scalar Tensor Gravity. (Berlin: Springer) · Zbl 1057.83002 · doi:10.1007/978-1-4020-1989-0
[144] Boisseau B, Esposito-Farèse G, Polarski D and Starobinsky A A 2000 Reconstruction of a scalar-tensor theory of gravity in an accelerating Universe Phys. Rev. Lett.85 2236 · doi:10.1103/physrevlett.85.2236
[145] Bertotti B, Iess L and Tortora P 2003 A test of general relativity using radio links with the Cassini spacecraft Nature425 374-6 · doi:10.1038/nature01997
[146] Avilez A and Skordis C 2014 Cosmological constraints on Brans-Dicke theory Phys. Rev. Lett.113 011101 · doi:10.1103/physrevlett.113.011101
[147] Amirhashchi H and Yadav A K 2020 Constraining an exact Brans-Dicke gravity theory with recent observations Phys. Dark Universe30 100711 · doi:10.1016/j.dark.2020.100711
[148] Fixsen D J 2009 The temperature of the cosmic microwave background Astrophys. J.707 916-20 · doi:10.1088/0004-637x/707/2/916
[149] Gorbunov D S and Rubakov V A 2011 Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory (Singapore: World Scientific) · Zbl 1246.83007
[150] Blas D, Lesgourgues J and Tram T 2011 The cosmic linear anisotropy solving system (CLASS). Part II: approximation schemes J. Cosmol. Astropart. Phys. JCAP07(2011)034 · doi:10.1088/1475-7516/2011/07/034
[151] Yu H, Ratra B and Wang F-Y 2018 Hubble parameter and baryon acoustic oscillation measurement constraints on the Hubble constant, the deviation from the spatially flat ΛCDM model, the deceleration-acceleration transition redshift, and spatial curvature Astrophys. J.856 3 · doi:10.3847/1538-4357/aab0a2
[152] Gómez-Valent A and Amendola L 2018 H0 from cosmic chronometers and type Ia supernovae, with Gaussian processes and the novel weighted polynomial regression method J. Cosmol. Astropart. Phys. JCAP04(2018)051 · doi:10.1088/1475-7516/2018/04/051
[153] Haridasu B S, Luković V V, Moresco M and Vittorio N 2018 An improved model-independent assessment of the late-time cosmic expansion J. Cosmol. Astropart. Phys. JCAP10(2018)015 · doi:10.1088/1475-7516/2018/10/015
[154] Silk J 1968 Cosmic black-body radiation and galaxy formation Astrophys. J.151 459 · doi:10.1086/149449
[155] Sachs R K and Wolfe A M 1967 Perturbations of a cosmological model and angular variations of the microwave background Astrophys. J.147 73-90 · doi:10.1086/148982
[156] Sachs R K, Wolfe A M, Ellis G, Ehlers J and Krasiński A 2007 Gen. Relativ. Gravit.39 1929 · Zbl 1150.83002 · doi:10.1007/s10714-007-0448-9
[157] Das S and Souradeep T 2014 Suppressing CMB low multipoles with ISW effect J. Cosmol. Astropart. Phys. JCAP02(2014)002 · doi:10.1088/1475-7516/2014/02/002
[158] Knox L and Millea M 2020 Hubble constant hunter’s guide Phys. Rev. D 101 043533 · doi:10.1103/physrevd.101.043533
[159] Tsujikawa S, Uddin K, Mizuno S, Tavakol R and Yokoyama J 2008 Constraints on scalar-tensor models of dark energy from observational and local gravity tests Phys. Rev. D 77 103009 · doi:10.1103/physrevd.77.103009
[160] Li B and Koyama K 2020 Modified Gravity
[161] Khoury J and Weltman A 2004 Chameleon fields: awaiting surprises for tests of gravity in space Phys. Rev. Lett.93 171104 · doi:10.1103/physrevlett.93.171104
[162] Hinterbichler K and Khoury J 2010 Symmetron fields: screening long-range forces through local symmetry restoration Phys. Rev. Lett.104 231301 · doi:10.1103/physrevlett.104.231301
[163] Kimura R, Kobayashi T and Yamamoto K 2012 Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory Phys. Rev. D 85 024023 · doi:10.1103/physrevd.85.024023
[164] Alam S et al 2017 The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample Mon. Not. R. Astron. Soc.470 2617-52 · doi:10.1093/mnras/stx721
[165] Aubourg E et al 2015 Cosmological implications of baryon acoustic oscillation measurements Phys. Rev. D 92 123516 · doi:10.1103/PhysRevD.92.123516
[166] Bernal J L, Verde L and Riess A G 2016 The trouble with H0 J. Cosmol. Astropart. Phys. JCAP10(2016)019 · doi:10.1088/1475-7516/2016/10/019
[167] Feeney S M, Peiris H V, Williamson A R, Nissanke S M, Mortlock D J, Alsing J and Scolnic D 2019 Prospects for resolving the Hubble constant tension with standard sirens Phys. Rev. Lett.122 061105 · doi:10.1103/physrevlett.122.061105
[168] Macaulay E et al 2019 First cosmological results using type Ia supernovae from the dark energy survey: measurement of the Hubble constant Mon. Not. R. Astron. Soc.486 2184-96 · doi:10.1093/mnras/stz978
[169] Park C-G and Ratra B 2020 Using SPT polarization, Planck 2015, and non-CMB data to constrain tilted spatially-flat and untilted nonflat ΛCDM, XCDM, and ϕCDM dark energy inflation cosmologies Phys. Rev. D 101 083508 · doi:10.1103/physrevd.101.083508
[170] Khadka N and Ratra B 2020 Using quasar X-ray and UV flux measurements to constrain cosmological model parameters Mon. Not. R. Astron. Soc.497 263-78 · doi:10.1093/mnras/staa1855
[171] Cao S, Ryan J and Ratra B 2020 Cosmological constraints from H ii starburst galaxy apparent magnitude and other cosmological measurements Mon. Not. R. Astron. Soc.497 3191-203 · doi:10.1093/mnras/staa2190
[172] Ma C-P and Bertschinger E 1995 Cosmological perturbation theory in the synchronous and conformal Newtonian gauges Astrophys. J.455 7-25 · doi:10.1086/176550
[173] Liddle A R and Lyth D H 2000 Cosmological Inflation and Large-Scale Structure (Cambridge: Cambridge University Press) · Zbl 0952.83001 · doi:10.1017/CBO9781139175180
[174] Lyth D H and Liddle A R 2009 The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure (Cambridge: Cambridge University Press) · Zbl 1167.83303 · doi:10.1017/CBO9780511819209
[175] Turner M S and White M 1997 CDM models with a smooth component Phys. Rev. D 56 R4439 · doi:10.1103/physrevd.56.r4439
[176] Scolnic D M et al 2018 The complete light-curve sample of spectroscopically confirmed SNe Ia from pan-STARRS1 and cosmological constraints from the combined Pantheon sample Astrophys. J.859 101 · doi:10.3847/1538-4357/aab9bb
[177] Abbott T M C et al 2019 First cosmology results using type Ia supernovae from the dark energy survey: constraints on cosmological parameters Astrophys. J.872 L30 · doi:10.3847/2041-8213/ab04fa
[178] de Sainte Agathe V et al 2019 Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα absorption in eBOSS DR14 Astron. Astrophys.629 A85 · doi:10.1051/0004-6361/201935638
[179] Gil-Marín H et al 2018 The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 Mon. Not. R. Astron. Soc.477 1604-38 · doi:10.1093/mnras/sty453
[180] Guy P, Beutler F, Percival W J, Blake C, Koda J and Ross A J 2018 Low redshift baryon acoustic oscillation measurement from the reconstructed 6-degree field galaxy survey Mon. Not. R. Astron. Soc.481 2371-83 · doi:10.1093/mnras/sty2405
[181] Kazin E A et al 2014 The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature Mon. Not. R. Astron. Soc.441 3524-42 · doi:10.1093/mnras/stu778
[182] Abbott T M C et al 2019 Dark energy survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1 Mon. Not. R. Astron. Soc.483 4866-83 · doi:10.1093/mnras/sty3351
[183] Jiménez R, Verde L, Treu T and Stern D 2003 Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background Astrophys. J.593 622-9 · doi:10.1086/376595
[184] Simon J, Verde L and Jimenez R 2005 Constraints on the redshift dependence of the dark energy potential Phys. Rev. D 71 123001 · doi:10.1103/physrevd.71.123001
[185] Stern D, Jiménez R, Verde L, Kamionkowski M and Stanford S A 2010 Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements J. Cosmol. Astropart. Phys. JCAP02(2010)008 · doi:10.1088/1475-7516/2010/02/008
[186] Moresco M et al 2012 Improved constraints on the expansion rate of the Universe up to z 1.1 from the spectroscopic evolution of cosmic chronometers J. Cosmol. Astropart. Phys. JCAP08(2012)006 · doi:10.1088/1475-7516/2012/08/006
[187] Zhang C, Zhang H, Yuan S, Liu S, Zhang T-J and Sun Y-C 2014 Four new observationalH(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven Res. Astron. Astrophys.14 1221-33 · doi:10.1088/1674-4527/14/10/002
[188] Moresco M 2015 Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 Mon. Not. R. Astron. Soc.450 L16-20 · doi:10.1093/mnrasl/slv037
[189] Moresco M et al 2016 A 6 · doi:10.1088/1475-7516/2016/05/014
[190] Ratsimbazafy A L, Loubser S I, Crawford S M, Cress C M, Bassett B A, Nichol R C and Väisänen P 2017 Age-dating luminous red galaxies observed with the southern african large telescope Mon. Not. R. Astron. Soc.467 3239-54 · doi:10.1093/mnras/stx301
[191] Jiménez R and Loeb A 2002 Constraining cosmological parameters based on relative galaxy ages Astrophys. J.573 37-42 · doi:10.1086/340549
[192] López-Corredoira M, Vazdekis A, Gutiérrez C M and Castro-Rodríguez N 2017 Stellar content of extremely red quiescent galaxies at z > 2 Astron. Astrophys.600 A91 · doi:10.1051/0004-6361/201629857
[193] López-Corredoira M and Vazdekis A 2018 Impact of young stellar components on quiescent galaxies: deconstructing cosmic chronometers Astron. Astrophys.614 A127 · doi:10.1051/0004-6361/201731647
[194] Moresco M, Jiménez R, Verde L, Pozzetti L, Cimatti A and Citro A 2018 Setting the stage for cosmic chronometers. I. Assessing the impact of young stellar populations on Hubble parameter measurements Astrophys. J.868 84 · doi:10.3847/1538-4357/aae829
[195] Gómez-Valent A 2019 Quantifying the evidence for the current speed-up of the Universe with low and intermediate-redshift data. A more model-independent approach J. Cosmol. Astropart. Phys. JCAP05(2019)026 · doi:10.1088/1475-7516/2019/05/026
[196] Qin F, Howlett C and Staveley-Smith L 2019 The redshift-space momentum power spectrum—II. Measuring the growth rate from the combined 2MTF and 6dFGSv surveys Mon. Not. R. Astron. Soc.487 5235-47 · doi:10.1093/mnras/stz1576
[197] Shi F et al 2018 Mapping the real space distributions of galaxies in SDSS DR7. II. Measuring the growth rate, clustering amplitude of matter, and biases of galaxies at redshift 0.1 Astrophys. J.861 137 · doi:10.3847/1538-4357/aacb20
[198] Simpson F, Blake C, Peacock J A, Baldry I, Bland-Hawthorn J, Heavens A, Heymans C, Loveday J and Norberg P 2016 Galaxy and mass assembly: redshift space distortions from the clipped galaxy field Phys. Rev. D 93 023525 · doi:10.1103/physrevd.93.023525
[199] Blake C et al 2013 Galaxy and mass assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure Mon. Not. R. Astron. Soc.436 3089 · doi:10.1093/mnras/stt1791
[200] Blake C et al 2011 The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z = 0.9 Mon. Not. R. Astron. Soc.415 2876 · doi:10.1111/j.1365-2966.2011.18903.x
[201] Mohammad F G et al 2018 The VIMOS public extragalactic redshift survey (VIPERS) Astron. Astrophys.619 A17 · doi:10.1051/0004-6361/201833853
[202] Guzzo L et al 2008 A test of the nature of cosmic acceleration using galaxy redshift distortions Nature451 541-4 · doi:10.1038/nature06555
[203] Song Y-S and Percival W J 2009 Reconstructing the history of structure formation using redshift distortions J. Cosmol. Astropart. Phys. JCAP10(2009)004 · doi:10.1088/1475-7516/2009/10/004
[204] Okumura T et al 2016 The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ∼ 1.4 Publ. Astron. Soc. Jpn68 38 · doi:10.1093/pasj/psw029
[205] Camarena D and Marra V 2020 A new method to build the (inverse) distance ladder Mon. Not. R. Astron. Soc.495 2630-44 · doi:10.1093/mnras/staa770
[206] Camarena D and Marra V 2020 Local determination of the Hubble constant and the deceleration parameter Phys. Rev. Res.2 013028 · doi:10.1103/physrevresearch.2.013028
[207] Dhawan S, Brout D, Scolnic D, Goobar A, Riess A G and Miranda V 2020 Cosmological model Insensitivity of local H 0 from the Cepheid distance ladder Astrophys. J.894 54 · doi:10.3847/1538-4357/ab7fb0
[208] Benevento G, Hu W and Raveri M 2020 Can late dark energy transitions raise the Hubble constant? Phys. Rev. D 101 103517 · doi:10.1103/physrevd.101.103517
[209] Giani L and Frion E 2020 Testing the equivalence principle with strong lensing time delay variations JCAP09(2020)008 · Zbl 1493.83007
[210] Takahashi R, Sato M, Nishimichi T, Taruya A and Oguri M 2012 Revising the Halofit model for the nonlinear matter power spectrum Astrophys. J.761 152 · doi:10.1088/0004-637x/761/2/152
[211] Chevallier M and Polarski D 2001 Accelerating universes with scaling dark matter Int. J. Mod. Phys. D 10 213-23 · doi:10.1142/s0218271801000822
[212] Linder E V 2003 Exploring the expansion history of the universe Phys. Rev. Lett.90 091301 · doi:10.1103/physrevlett.90.091301
[213] Beutler F, Blake C, Colless M, Jones D H, Staveley-Smith L, Campbell L, Parker Q, Saunders W and Watson F 2011 The 6dF galaxy survey: baryon acoustic oscillations and the local Hubble constant Mon. Not. R. Astron. Soc.416 3017-32 · doi:10.1111/j.1365-2966.2011.19250.x
[214] Ross A J, Samushia L, Howlett C, Percival W J, Burden A and Manera M 2015 The clustering of the SDSS DR7 main galaxy sample—I. A 4 per cent distance measure at z = 0.15 Mon. Not. R. Astron. Soc.449 835-47 · doi:10.1093/mnras/stv154
[215] Abbott B et al 2017 GW170817: observation of gravitational waves from a binary neutron star inspiral Phys. Rev. Lett.119 161101 · doi:10.1103/PhysRevLett.119.161101
[216] Creminelli P and Vernizzi F 2017 Dark energy after GW170817 and GRB170817A Phys. Rev. Lett.119 251302 · doi:10.1103/physrevlett.119.251302
[217] Ezquiaga J M and Zumalacárregui M 2017 Dark energy after GW170817: dead ends and the road ahead Phys. Rev. Lett.119 251304 · doi:10.1103/physrevlett.119.251304
[218] Uzan J-P 2011 Varying constants, gravitation and cosmology Living Rev. Relativ.14 2 · Zbl 1215.83012 · doi:10.12942/lrr-2011-2
[219] Audren B, Lesgourgues J, Benabed K and Prunet S 2013 Conservative constraints on early cosmology with MONTEPYTHON J. Cosmol. Astropart. Phys. JCAP02(2013)001 · doi:10.1088/1475-7516/2013/02/001
[220] Lewis A 2019 GetDist: a Python package for analysing Monte Carlo samples (arXiv:1910.13970)
[221] Heavens A, Fantaye Y, Mootoovaloo A, Eggers H, Hosenie Z, Kroon S and Sellentin E 2017 Marginal likelihoods from Monte Carlo Markov chains (arXiv:1704.03472)
[222] Spiegelhalter D J, Best N G, Carlin B P and van der Linde A 2002 Bayesian measures of model complexity and fit J Royal Statistical Soc B 64 583 · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[223] Schwarz G 1978 Estimating the dimension of a model Ann. Statist.6 461-4 · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[224] Kass R E and Raftery A E 1995 Bayes factors J. Am. Stat. Assoc.90 773-95 · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572
[225] Burnham K P and Anderson D R 2002 Model Selection and Multimodel Inference (New York: Springer) · Zbl 1005.62007
[226] Nagata R, Chiba T and Sugiyama N 2004 WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant Phys. Rev. D 69 083512 · doi:10.1103/physrevd.69.083512
[227] Acquaviva V, Baccigalupi C, Leach S M, Liddle A R and Perrotta F 2005 Structure formation constraints on the Jordan-Brans-Dicke theory Phys. Rev. D 71 104025 · doi:10.1103/physrevd.71.104025
[228] Fritzsch H and Solà J 2012 Matter non-conservation in the universe and dynamical dark energy Class. Quantum Grav.29 215002 · Zbl 1266.83187 · doi:10.1088/0264-9381/29/21/215002
[229] Müller J and Biskupek L 2007 Variations of the gravitational constant from lunar laser ranging data Class. Quantum Grav.24 4533-8 · Zbl 1128.85301 · doi:10.1088/0264-9381/24/17/017
[230] Pogosian L 2005 The evolving dark energy equation of state and cosmic microwave background/large scale structure cross-correlation J. Cosmol. Astropart. Phys. JCAP04(2005)015 · doi:10.1088/1475-7516/2005/04/015
[231] Zucca A, Pogosian L, Silvestri A, Wang Y and Zhao G-B 2020 Generalized Brans-Dicke theories in light of evolving dark energy Phys. Rev. D 101 043518 · doi:10.1103/physrevd.101.043518
[232] Loureiro A et al 2019 On the upper bound of neutrino masses from combined cosmological observations and particle physics experiments Phys. Rev. Lett.123 081301 · doi:10.1103/physrevlett.123.081301
[233] Shapiro I L and Solà J 2002 The scaling evolution of the cosmological constant J. High Energy Phys. JHEP02(2002)006 · doi:10.1088/1126-6708/2002/02/006
[234] Solà J 2008 Dark energy: a quantum fossil from the inflationary Universe? J. Phys. A: Math. Theor.41 164066 · Zbl 1140.83411 · doi:10.1088/1751-8113/41/16/164066
[235] Shapiro I L and Solà J 2009 On the possible running of the cosmological ‘constant’ Phys. Lett. B 682 105-13 · doi:10.1016/j.physletb.2009.10.073
[236] Babic A, Guberina B, Horvat R and Stefancic H 2005 Renormalization-group running cosmologies. A Scale-setting procedure Phys. Rev. D 71 124041 · doi:10.1103/physrevd.71.124041
[237] Ward B F L 2013 An estimate of Λ in resummed quantum gravity in the context of asymptotic safety Phys. Dark Universe2 97-109 · doi:10.1016/j.dark.2013.06.002
[238] Antipin O and Melic B 2017 Revisiting the decoupling effects in the running of the cosmological constant Eur. Phys. J. C 77 583 · doi:10.1140/epjc/s10052-017-5153-6
[239] Bahamonde S, Böhmer C G, Carloni S, Copeland E J, Fang W and Tamanini N 2018 Dynamical systems applied to cosmology: dark energy and modified gravity Phys. Rep.775-777 1-122 · Zbl 1404.83143 · doi:10.1016/j.physrep.2018.09.001
[240] Chen X-l. and Kamionkowski M 1999 Cosmic microwave background temperature and polarization anisotropy in Brans-Dicke cosmology Phys. Rev. D 60 104036 · doi:10.1103/physrevd.60.104036
[241] Pinho A M, Casas S and Amendola L 2018 Model-independent reconstruction of the linear anisotropic stress η J. Cosmol. Astropart. Phys. JCAP11(2018)027 · Zbl 1527.85007 · doi:10.1088/1475-7516/2018/11/027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.