×

Inverse-closedness of the subalgebra of locally nuclear operators. (English) Zbl 07722723

Summary: Let \(X\) be a Banach space and \(T\) be a bounded linear operator acting in \(l_p(\mathbb{Z}^c,X), 1 \le p\le\infty\). The operator \(T\) is called locally nuclear if it can be represented in the form \[(Tx)_k=\sum_{m\in\mathbb{Z}^c}b_{km}x_{k-m},\ k\in\mathbb{Z}^c,\] where \(b_{km}:X\to X\) are nuclear, \[\vert \vert b_{km}\vert \vert_{\mathfrak S_1}\le \beta_m,\ k,m\in\mathbb{Z}^c,\] \(\vert \vert \cdot\vert \vert_{\mathfrak S_1}\) is the nuclear norm, \(\beta\in l_g(\mathbb{Z}^c,X)\), and \(g\) is an appropriate weight on \(\mathbb{Z}^c\). It is established that, if \(T\) is locally nuclear and the operator \((1+T)^{-1}\) is invertible, then the inverse operator \((1 + T)^{-1}\) has the form \(1 + T_1\), where \(T_1\) is also locally nuclear. This result is refined for the case of operators acting in \(l_p(\mathbb{R}^c,\mathbb{C})\).

MSC:

47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
35P05 General topics in linear spectral theory for PDEs

References:

[1] Asekritova, I.; Karlovich, Yu; Kruglyak, N., One-sided invertibility of discrete operators and their applications, Aequationes Math., 92, 39-73 (2018) · Zbl 1417.39068 · doi:10.1007/s00010-017-0522-7
[2] Baskakov, A. G., Wiener’s theorem and asymptotic estimates for elements of inverse matrices, Funktsional. Anal. i Prilozhen., 24, 64-65 (1990) · Zbl 0728.47021
[3] Baskakov, A. G., Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis, Sibirsk. Mat. Zh., 38, 14-28 (1997) · Zbl 0870.43003
[4] Baskakov, A. G., Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators, J. Math. Sci., 137, 4885-5036 (2006) · Zbl 1099.46501 · doi:10.1007/s10958-006-0286-4
[5] Beltiţă, I.; Beltiţă, D., Inverse-closed algebras of integral operators on locally compact groups, Ann. Henri Poincaré, 16, 1283-1306 (2015) · Zbl 1328.46056 · doi:10.1007/s00023-014-0320-x
[6] Blatov, I. A.; Terteryan, A. A., Estimates for the elements of inverse matrices and incomplete block factorization methods based on matrix sweep, Zh. Vychisl. Mat. i Mat. Fiz., 32, 1683-1696 (1992) · Zbl 0789.65013
[7] Bourbaki, N., Éléments de mathématique. Fascicule XXXII. Théories spectrales. Chapitre I: Algèbres normées. Chapitre II: Groupes localement compacts commutatifs (1967), Paris: Hermann, Paris · Zbl 0152.32603
[8] Bourbaki, N., Integration. I. Chapters 1-6 (2004), Berlin: Springer-Verlag, Berlin
[9] Defant, A.; Floret, K., Tensor Norms and Operator Ideals (1993), Amsterdam-London-New York-Tokyo: North-Holland Publishing Co., Amsterdam-London-New York-Tokyo · Zbl 0774.46018 · doi:10.1016/S0304-0208(08)70293-7
[10] Delgado, J.; Schulze, B-W; Wong, M. W., A trace formula for nuclear operators on L^p, Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, 181-193 (2010), Basel-Boston-Berlin: Birkhäuser Verlag AG, Basel-Boston-Berlin · Zbl 1229.47051
[11] Demko, S., Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal., 14, 616-619 (1977) · Zbl 0367.65024 · doi:10.1137/0714041
[12] Demko, S., Spectral bounds for ∥A^−1∥_∞, J. Approx. Theory, 48, 207-212 (1986) · Zbl 0618.41012 · doi:10.1016/0021-9045(86)90005-5
[13] Demko, S.; Moss, W. F.; Smith, Ph W., Decay rates for inverses of band matrices, Math. Comp., 43, 491-499 (1984) · Zbl 0568.15003 · doi:10.1090/S0025-5718-1984-0758197-9
[14] Dunford, N.; Schwartz, J. T., Linear operators. Part I. General theory (1988), New York: Wiley Classics Library, John Wiley & Sons, Inc., New York
[15] Farrell, B.; Strohmer, Th, Inverse-closedness of a Banach algebra of integral operators on the Heisenberg group, J. Operator Theory, 64, 189-205 (2010) · Zbl 1212.43002
[16] Fendler, G.; Gröchenig, K.; Leinert, M., Convolution-dominated operators on discrete groups, Integral Equations Operator Theory, 61, 493-509 (2008) · Zbl 1194.47030 · doi:10.1007/s00020-008-1604-7
[17] Fernández-Torres, G.; Karlovich, Yu, Two-sided and one-sided invertibility of Wiener-type functional operators with a shift and slowly oscillating data, Banach J. Math. Anal., 11, 554-590 (2017) · Zbl 1381.47076 · doi:10.1215/17358787-2017-0006
[18] Fournier, J. J F.; Stewart, J., Amalgams of L^p and l^q, Bull. Amer. Math. Soc. (N.S.), 13, 1-21 (1985) · Zbl 0593.43005 · doi:10.1090/S0273-0979-1985-15350-9
[19] Gohberg, I.; Kaashoek, M. A.; Woerdeman, H. J., The band method for positive and strictly contractive extension problems: an alternative version and new applications, Integral Equations Operator Theory, 12, 343-382 (1989) · Zbl 0676.46043 · doi:10.1007/BF01235737
[20] Golub, G. H.; Van Loan, Ch F., Matrix Computations (2013), Baltimore, MD: Johns Hopkins University Press, Baltimore, MD · Zbl 1268.65037 · doi:10.56021/9781421407944
[21] Gröchenig, K., Wiener’s lemma: theme and variations. An introduction to spectral invariance, Four Short Courses on Harmonic Analysis: Wavelets, Frames, Time-Frequency Methods, and Applications to Signal and Image Analysis, 175-244 (2010), Boston-Basel-Berlin: Birkhäuser, Boston-Basel-Berlin · Zbl 1215.46034 · doi:10.1007/978-0-8176-4891-6_5
[22] Gröchenig, K.; Klotz, A., Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices, Constr. Approx., 32, 429-466 (2010) · Zbl 1210.41010 · doi:10.1007/s00365-010-9101-z
[23] Gröchenig, K.; Leinert, M., Symmetry and inverse-closedness of matrix algebras and functional calculus for infinite matrices, Trans. Amer. Math. Soc., 358, 2695-2711 (2006) · Zbl 1105.46032 · doi:10.1090/S0002-9947-06-03841-4
[24] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires (1966), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0064.35501
[25] E. Yu. Guseva and V. G. Kurbatov, Inverse-closedness of subalgebras of integral operators with almost periodic kernels, Complex Anal. Oper. Theory, 14 (2020), Paper No. 4, 23 pp. · Zbl 1501.47119
[26] Hille, E.; Phillips, R. S., Functional analysis and semi-groups, American Mathematical Society Colloquium Publications (1957), Providence, RI: Amer. Math. Soc., Providence, RI · Zbl 0078.10004
[27] Jaffard, S., Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 461-476 (1990) · Zbl 0722.15004 · doi:10.1016/s0294-1449(16)30287-6
[28] Kurbatov, V. G., Algebras of difference and integral operators, Funktsional. Anal. i Prilozhen., 24, 87-88 (1990) · Zbl 0723.47029 · doi:10.1007/BF01077713
[29] Kurbatov, V. G., Linear Differential-difference Equations (1990), Voronezh: Voronezh State University, Voronezh · Zbl 0733.34068
[30] Kurbatov, V. G., Functional Differential Operators and Equations (1999), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0926.34053
[31] Kurbatov, V. G., Some algebras of operators majorized by a convolution, Funct. Differ. Equ., 8, 323-333 (2001) · Zbl 1050.47036
[32] Kurbatov, V. G.; Kuznetsova, V. I., Inverse-closedness of the set of integral operators with L_1-continuously varying kernels, J. Math. Anal. Appl., 436, 322-338 (2016) · Zbl 1330.47061 · doi:10.1016/j.jmaa.2015.12.007
[33] Pietsch, A., Operator Ideals (1978), Berlin: VEB Deutscher Verlag der Wissenschaften, Berlin · Zbl 0399.47039
[34] Rabinovich, V. S.; Roch, S.; Silbermann, B., Fredholm theory and finite section method for band-dominated operators, Integral Equations Operator Theory, 30, 452-495 (1998) · Zbl 0909.47023 · doi:10.1007/BF01257877
[35] Rabinovich, V. S.; Roch, S.; Silbermann, B., Limit Operators and Their Applications in Operator Theory (2004), Basel: Birkhäuser Verlag, Basel · Zbl 1077.47002 · doi:10.1007/978-3-0348-7911-8
[36] Rudin, W., Functional Analysis (1973), New York-Düsseldorf-Johannesburg: McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg · Zbl 0253.46001
[37] Ruston, A. F., On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space, Proc. London Math. Soc. (2), 53, 109-124 (1951) · Zbl 0054.04906 · doi:10.1112/plms/s2-53.2.109
[38] Ruston, A. F., Direct products of Banach spaces and linear functional equations, Proc. London Math. Soc. (3), 1, 327-384 (1951) · Zbl 0043.11003 · doi:10.1112/plms/s3-1.1.327
[39] Sjöstrand, J., Wiener type algebras of pseudodifferential operators, Séminaire sur les Équations aux Dérivées Partielles (1995), Palaiseau: École Polytech., Palaiseau · Zbl 0880.35145
[40] Sun, Q., Wiener’s lemma for infinite matrices with polynomial off-diagonal decay, C. R. Math. Acad. Sci. Paris, 340, 567-570 (2005) · Zbl 1069.42018 · doi:10.1016/j.crma.2005.03.002
[41] Sun, Q., Wiener’s lemma for infinite matrices. II, Constr. Approx., 34, 209-235 (2011) · Zbl 1253.46057 · doi:10.1007/s00365-010-9121-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.