×

Very high-order accurate finite volume scheme for the steady-state incompressible Navier-Stokes equations with polygonal meshes on arbitrary curved boundaries. (English) Zbl 1507.76133

Summary: The numerical solution of the incompressible Navier-Stokes equations raises challenging numerical issues on the development of accurate and robust discretisation techniques due to the div-grad duality. Significant advances have been achieved in the context of high-order of convergence methods, but many questions remain unsolved in the quest of practical, accurate, and efficient approaches. In particular, the discretisation of problems with arbitrary curved boundaries has been the subject of intensive research, where the conventional practice consists in employing curved meshes to avoid accuracy deterioration. The present work proposes a novel approach, the reconstruction for off-site data method, which employs polygonal meshes to approximate arbitrary smooth curved boundaries with linear piecewise elements. The Navier-Stokes equations are discretised with a staggered finite volume method, and the numerical fluxes are computed on the polygonal mesh elements. Boundary conditions are taken into account via polynomial reconstructions with specific linear constraints defined for a set of points on the physical boundary. The very-high order of convergence is preserved without relying on the full curve parametrisation, avoiding the limitations of curved mesh approaches, such as sophisticated mesh generation algorithms, cumbersome quadrature rules, and complex non-linear transformations. A comprehensive verification benchmark is provided, with numerical test cases for several fluid flow problems, to demonstrate the capability of the proposed approach to achieve very high-orders of convergence.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Ferziger, J. H.; Perić, M., Computational Methods for Fluids Dynamics (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0869.76003
[2] Rhie, C. M.; Chow, W. L., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 21, 1525-1532 (1983) · Zbl 0528.76044
[3] Griffith, B. E., An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as preconditioner, J. Comput. Phys., 228, 7565-7595 (2009) · Zbl 1391.76474
[4] Chorin, A. J., Numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 212, 12-26 (1967) · Zbl 0149.44802
[5] Peyret, R.; Taylor, T. D., Computational Methods for Fluid Flow (1985), Springer-Verlag: Springer-Verlag New York
[6] Temam, R., Navier-Stokes equations. Theory and Numerical Analysis (1977), North-Holland: North-Holland Amsterdam · Zbl 0383.35057
[7] Pironneau, O., Finite Element Methods for Fluids (1990), John Wiley: John Wiley Chichester
[8] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer Berlin-Heidelberg-New York · Zbl 0788.73002
[9] Guermont, J. L.; Minev, P.; Shen, J., An overview of the projection methods for incompressible flows, Comput. Meth. Appl. Engrg., 195, 6011-6045 (2006) · Zbl 1122.76072
[10] Zienkiewicz, O. C.; Taylor, R. L.; Nithiarasu, P., The Finite Element Method for Fluid Dynamics (2014), Butterworth-Heinemann: Butterworth-Heinemann Waltham · Zbl 1278.76006
[11] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere: Hemisphere New-York · Zbl 0521.76003
[12] Boivin, S.; Cayré, F.; Hérard, J.-M., A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes, Int. J. Therm. Sci., 39, 806-825 (2000)
[13] Vidović, D.; Segal, A.; Wesseling, P., A superlinearly convergent finite volume method for the incompressible Navier-Stokes equations on staggered unstructured grids, J. Comput. Phys., 198, 159-177 (2004) · Zbl 1057.76044
[14] Eymard, R.; Latché, J. C.; Herbin, R.; Piar, B., Convergence of a locally stabilized collocated finite volume scheme for incompressible flows, M2AN Math. Model. Numer. Anal., 43, 889-927 (2009) · Zbl 1246.76087
[15] Gao, W.; Duan, Y.-L.; Liu, R.-X., The finite volume projection method with hybrid unstructured triangular collocated grids for incompressible flows, J. Hydrodyn., 21, 201-211 (2009)
[16] Shang, S.; Zhao, X.; Bayyuk, S., Generalized formulations for the Rhie-Chow interpolation, J. Comput. Phys., 258, 880-914 (2014) · Zbl 1349.76562
[17] Hirsh, R.-S., Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys., 19, 90-109 (1975) · Zbl 0326.76024
[18] Kampanis, N. A.; Ekaterinaris, J. A., A staggered grid, high-order accurate method for the incompressible Navier-Stokes equations, J. Comput. Phys., 215, 589-613 (2006) · Zbl 1173.76375
[19] Boersma, B. J., A 6th order staggered compact finite difference method for the incompressible Navier-Stokes and scalar transport equations, J. Comput. Phys., 230, 4940-4954 (2011) · Zbl 1416.76172
[20] Frochte, J.; Heinrichs, W., A splitting technique of higher order for the Navier-Stokes equations, J. Comput. Appl. Math., 228, 373-390 (2009) · Zbl 1162.76028
[21] Montlaur, A.; Fernandez-Mendez, S.; Huerta, A., Discontinuous Galerkin methods forthe Stokes equations using divergence-free approximations, Internat. J. Numer. Methods Fluids, 57, 1071-1092 (2008) · Zbl 1338.76062
[22] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 224-230 (2011) · Zbl 1431.76011
[23] Smirnov, S.; Lacor, C.; Baelmans, M., A finite volume formulation for compact scheme with application to LES, AIAA Pap., 2001-2546 (2001)
[24] Michalak, C.; Ollivier-Gooch, C., Unstructured high-order accurate finite-volume solutions of the Navier-Stokes equations, AIAA Pap. (2009), 2009-954
[25] Ivan, L.; Groth, C. P.T., High-order solution-adaptative central essentially non-oscillatory (CENO) method for viscous flows, AIAA Pap. (2011), 2011-367
[26] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: Very-high-order finite volume method for hyperbolic systems, Internat. J. Numer. Methods Fluids, 73, 362-392 (2013) · Zbl 1455.65147
[27] Pereira, J. M.C.; Kobayashi, M. H.; Pereira, J. C.F., A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions, J. Comput. Phys., 167, 217-243 (2001) · Zbl 1013.76054
[28] Piller, M.; Stalio, E., Finite volume compact schemes on staggered grids, J. Comput. Phys., 197, 299-340 (2004) · Zbl 1106.76406
[29] Hokpunna, A.; Manhart, M., Compact fourth-order finite volume method for numerical solutions of Navier-Stokes equations on staggered grids, J. Comput. Phys., 229, 7545-7570 (2010) · Zbl 1425.76164
[30] Lacor, C.; Smirnov, S.; Baelmans, M., A finite volume formulation of compact central schemes on arbitrary structural grids, J. Comput. Phys., 198, 535-566 (2004) · Zbl 1051.65086
[31] Fosso, A.; Deniau, H.; Sicot, F.; Saguat, P., Curvilinear finite volume schemes using high-order compact interpolation, J. Comput. Phys., 229, 5090-5122 (2010) · Zbl 1346.76081
[32] Nogueira, X.; Khelladi, S.; Colominas, I.; Cueto-Felgueroso, L.; París, J.; Gómez, H., High resolution finite-volume methods on unstructured grids for turbulence and aeroacustics, Arch. Comput. Methods Eng., 18, 315-340 (2011) · Zbl 1284.76270
[33] Ramírez, L.; Nogueira, X.; Hhelladi, S.; Chassaing, J.; Colominas, I., A new higher-order finite volume method based on moving least squares for the resolution of the incompressible Navier-Stokes equations on unstructured grids, Comput. Methods Appl. Mech. Engrg., 278, 883-901 (2014) · Zbl 1423.76306
[34] Costa, R.; Clain, S.; Machado, G. J., A sixth-order finite volume scheme for the steady-state incompressible Stokes equations on staggered unstructured meshes, J. Comput. Phys., 349, 501-527 (2017) · Zbl 1380.76056
[35] Costa, R.; Clain, S.; Machado, G. J.; Loubère, R., A very high-order accurate staggered finite volume scheme for the stationary incompressible Navier-Stokes and Euler equations on unstructured meshes, J. Sci. Comput., 71, 1375-1411 (2017) · Zbl 1432.76174
[36] Zienkiewicz, O. C., The Finite Element Method in Engineering Science (1971), McGraw-Hill · Zbl 0237.73071
[37] S. Pezzano, R. Duvigneau, A NURBS-based discontinuous Galerkin framework for compressible aerodynamics, in: AIAA Aviation 2020 Forum. · Zbl 07508514
[38] Duvigneau, R., CAD-consistent adaptive refinement using a NURBS-based discontinuous Galerkin method, Numer. Meth. Fluids, 92, 1096-1117 (2020)
[39] Krivodonova, L.; Berger, M., High-order accurate implementation of solid wall boundary conditions in curved geometries, J. Comput. Phys., 211, 492-512 (2006) · Zbl 1138.76403
[40] Zhang, X., A curved boundary treatment for discontinuous Galerkin schemes solving time dependent problems, J. Comput. Phys., 308, 153-170 (2016) · Zbl 1352.65380
[41] Ye, T.; Mittal, R.; Udaykumar, H. S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156, 209-240 (1999) · Zbl 0957.76043
[42] Kirkpatrick, M. P.; Armfield, S. W.; J. H., Kent a representation of curved boundaries for the solution of the Navier-Stokes equations on a staggered three-dimensional Cartesian grid, J. Comput. Phys., 184, 1-36 (2003) · Zbl 1118.76350
[43] Muralidharan, B.; Menon, S., A high-order adaptive Cartesian cut-cell method for simulation of compressible viscous flow over immersed bodies, J. Comput. Phys., 321, 342-368 (2016) · Zbl 1349.76370
[44] Ge, L.; Sotiropoulos, F., A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, J. Comput. Phys., 225, 1782-1809 (2007) · Zbl 1213.76134
[45] Rodi, W.; Majumdar, S.; Schönung, B., Finite volume methods for two-dimensional incompressible flows with complex boundaries, Comput. Methods Appl. Mech. Engrg., 75, 369-392 (1989) · Zbl 0687.76034
[46] Segal, A.; Wesseling, P.; van Kan, J.; Oosterlee, C. W.; Kassels, K., Invariant discretization of the incompressible Navier-Stokes equations in boundary fitted co-ordinates, Internat. J. Numer. Methods Fluids, 15, 411-426 (1992) · Zbl 0753.76140
[47] Nikitin, N., Finite-difference method for incompressible Navier-Stokes equations in arbitrary orthogonal curvilinear coordinates, J. Comput. Phys., 217, 759-781 (2006) · Zbl 1099.76045
[48] Liao, F.; He, G., High-order adapter schemes for cell centered finite difference method, J. Comput. Phys., 403, Article 109090 pp. (2020) · Zbl 1453.76134
[49] Tseng, Y.-H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192, 593-623 (2003) · Zbl 1047.76575
[50] Dadone, A.; Grossman, B., Ghost-cell method for inviscid two-dimensional flows on Cartesian grids, AIAA J., 42, 2499-2507 (2004)
[51] Dadone, A.; Grossman, B., Ghost-cell method for analysis of inviscid three-dimensional flows on Cartesian-grids, Comput. Fluids, 36, 1513-1528 (2007) · Zbl 1194.76200
[52] Coco, A.; Russo, G., Finite-difference ghost-point multigrid methods on Cartesian grids for elliptic problems in arbitrary domains, J. Comput. Phys., 241, 464-501 (2013) · Zbl 1349.65555
[53] Coco, A.; Russo, G., Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface, J. Comput. Phys., 361, 299-330 (2018) · Zbl 1422.65306
[54] Coco, A., A multigrid ghost-point level-set method for incompressible Navier-Stokes equations on moving domains with curved boundary, J. Comput. Phys., 418, Article 109623 pp. (2020) · Zbl 07506176
[55] Baeza, A.; Mulet, P.; o, D. Zorí, High order boundary extrapolation technique for finite difference methods on complex domains with Cartesian meshes, J. Sci. Comput., 66, 2, 761-791 (2015) · Zbl 1335.65068
[56] Baeza, A.; Mulet, P.; o, D. Zorí, High order weighted extrapolation for boundary conditions for finite difference methods on complex domains with Cartesian meshes, J. Sci. Comput., 69, 1, 170-200 (2016) · Zbl 1352.65225
[57] Clain, S.; Lopes, D.; Pereira, R. M.S., Very high-order Cartesian-grid finite difference method on arbitrary geometries, J. Comput. Phys., 434, Article 110217 pp. (2021) · Zbl 07508525
[58] Costa, R.; Clain, S.; Loubère, R.; Machado, G. J., Very high-order accurate finite volume scheme on curved boundaries for the two-dimensional steady-state convection-diffusion equation with Dirichlet condition, Appl. Math. Model., 54, 752-767 (2018) · Zbl 1480.65318
[59] Costa, R.; Nóbrega, J. M.; Clain, S.; Machado, G. J.; Loubère, R., Very high-order accurate finite volume scheme for the convection-diffusion equation with general boundary conditions on arbitrary curved boundaries, Int. J. Numer. Methods Engrg., 117, 2, 188-220 (2019) · Zbl 07865099
[60] Costa, R.; Nóbrega, J. M.; Clain, S.; Machado, G. J., Very high-order accurate polygonal mesh finite volume scheme for conjugate heat transfer problems with curved interfaces and imperfect contacts, Comput. Methods Appl. Mech. Engrg., 357, Article 112560 pp. (2019) · Zbl 1442.74007
[61] Costa, R.; Nóbrega, J. M.; Clain, S.; Machado, G. J., Efficient very high-order accurate polyhedral mesh finite volume scheme for 3D conjugate heat transfer problems in curved domains, J. Comput. Phys., 445, Article 110604 pp. (2021) · Zbl 07515860
[62] Costa, R.; Nóbrega, J. M.; Clain, S.; Machado, G. J., High-order accurate conjugate heat transfer solutions with a finite volume method in anisotropic meshes with application in polymer processing, Int. J. Numer. Engrg., 123, 4, 1146-1185 (2022) · Zbl 07767262
[63] Wells, D. E.; Krakiwsky, E. J., The Method of Least-Squares, Lecture Notes 18, Department of Surveying Engineering (1971), University of New Brunswick: University of New Brunswick Fredericton
[64] Bertsekas, D. P., Constrained Optimization and Lagrange Multiplier Methods (1982), Academic Press · Zbl 0572.90067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.