×

A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series. (English) Zbl 07527013

Summary: The causality analysis is an important research topic in time series data mining. Granger causality analysis is a powerful method that determines cause and effect based on predictability. However, the traditional Granger causality is limited to analyzing linear causality between bivariate time series, because it is based on vector autoregressive models. In this paper, we propose a novel method, named Hilbert-Schmidt independence criterion Lasso Granger causality (HSIC-Lasso-GC), for revealing nonlinear causality between multivariate time series. Firstly, for each time series, we perform stationarity test and state space reconstruction to extract the historical information. Then, we build a HSIC-Lasso model of all input variables and output variable, where the optimal model is selected by generalized information criterion. Finally, according to the significance test, we get the causality analysis results from all input variables to output variable. In the simulations, we use two benchmark datasets and two actual datasets to test the effectiveness of the proposed method. The results show that the proposed method can effectively analyze nonlinear causality between multivariate time series.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

MVGC; GCCA
Full Text: DOI

References:

[1] Wang, Q., Multifractal characterization of air polluted time series in China, Physica A, 514, 167-180 (2019)
[2] Hassani, H.; Huang, X.; Gupta, R.; Ghodsi, M., Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests, Physica A, 460, 54-65 (2016)
[3] Baek, S.; Kim, D. Y., Empirical sensitivity analysis of discretization parameters for fault pattern extraction from multivariate time series data, IEEE Trans. Cybern., 47, 5, 1198-1209 (2017)
[4] Lindner, B.; Auret, L.; Bauer, M.; Groenewald, J. W., Comparative analysis of granger causality and transfer entropy to present a decision flow for the application of oscillation diagnosis, J. Process Control, 79, 72-84 (2019)
[5] Ren, W.; Han, M., Classification of EEG signals using hybrid feature extraction and ensemble extreme learning machine, Neural Process. Lett. (2018)
[6] Bakhshayesh, H.; Fitzgibbon, S. P.; Janani, A. S.; Grummett, T. S.; Pope, K. J., Detecting connectivity in EEG: A comparative study of data-driven effective connectivity measures, Comput. Biol. Med., 111, Article 103329 pp. (2019)
[7] Rafindadi, A. A., Does the need for economic growth influence energy consumption and CO2 emissions in Nigeria? Evidence from the innovation accounting test, Renew. Sustain. Energy Rev., 62, 1209-1225 (2016)
[8] Papana, A.; Kyrtsou, C.; Kugiumtzis, D.; Diks, C., Financial networks based on granger causality: A case study, Physica A, 482, 65-73 (2017)
[9] Wen, F.; Xiao, J.; Huang, C.; Xia, X., Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility, Appl. Econ., 50, 3, 319-334 (2018)
[10] Azqueta-Gavaldón, A., CaUsal inference between cryptocurrency narratives and prices: Evidence from a complex dynamic ecosystem, Physica A, 537, Article 122574 pp. (2019)
[11] Rafindadi, A. A.; Ozturk, I., Natural gas consumption and economic growth nexus: Is the 10th Malaysian plan attainable within the limits of its resource?, Renew. Sustain. Energy Rev., 49, 1221-1232 (2015)
[12] Zhu, J. Y.; Sun, C.; Li, V. O., An extended spatio-temporal granger causality model for air quality estimation with heterogeneous urban big data, IEEE Trans. Big Data, 3, 3, 307-319 (2017)
[13] Chen, Z.; Xie, X.; Cai, J.; Chen, D.; Gao, B.; He, B.; Cheng, N.; Xu, B., Understanding meteorological influences on PM 2.5 concentrations across China: a temporal and spatial perspective, Atmos. Chem. Phys., 18, 8, 5343-5358 (2018)
[14] Wu, G. R.; Chen, F.; Kang, D.; Zhang, X.; Marinazzo, D.; Chen, H., Multiscale causal connectivity analysis by canonical correlation: theory and application to epileptic brain, IEEE Trans. Biomed. Eng., 58, 11, 3088-3096 (2011)
[15] Van Mierlo, P.; Papadopoulou, M.; Carrette, E.; Boon, P.; Vandenberghe, S.; Vonck, K.; Marinazzo, D., Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization, Prog. Neurobiol., 121, 19-35 (2014)
[16] Rafindadi, A. A.; Ozturk, I., Effects of financial development, economic growth and trade on electricity consumption: Evidence from post-fukushima Japan, Renew. Sustain. Energy Rev., 54, 1073-1084 (2016)
[17] Rafindadi, A. A.; Ozturk, I., Impacts of renewable energy consumption on the german economic growth: Evidence from combined cointegration test, Renew. Sustain. Energy Rev., 75, 1130-1141 (2017)
[18] Rafindadi, A. A.; Mika’Ilu, A. S., Sustainable energy consumption and capital formation: Empirical evidence from the developed financial market of the United Kingdom, Sustain. Energy Technol. Assess., 35, 265-277 (2019)
[19] Rafindadi, A. A.; Usman, O., Globalization, energy use, and environmental degradation in South Africa: Startling empirical evidence from the maki-cointegration test, J. Environ. Manag., 244, 265-275 (2019)
[20] Granger, C. W.J., Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 424-438 (1969) · Zbl 1366.91115
[21] Huang, X.; Maçaira, P. M.; Hassani, H.; Oliveira, F. L.C.; Dhesi, G., Hydrological natural inflow and climate variables: Time and frequency causality analysis, Physica A, 516, 480-495 (2019)
[22] Porta, A.; Faes, L., Wiener-Granger causality in network physiology with applications to cardiovascular control and neuroscience, Proc. IEEE, 104, 2, 282-309 (2016)
[23] Schreiber, T., Measuring information transfer, Phys. Rev. Lett., 85, 2, 461 (2000)
[24] Staniek, M.; Lehnertz, K., Symbolic transfer entropy, Phys. Rev. Lett., 100, 15, Article 158101 pp. (2008)
[25] Papana, A.; Kyrtsou, C.; Kugiumtzis, D.; Diks, C., Detecting causality in non-stationary time series using partial symbolic transfer entropy: evidence in financial data, Comput. Econ., 47, 3, 341-365 (2016)
[26] Faes, L.; Nollo, G.; Porta, A., Information-based detection of nonlinear granger causality in multivariate processes via a nonuniform embedding technique, Phys. Rev. E, 83, 5, Article 051112 pp. (2011)
[27] Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M., Causality detection based on information-theoretic approaches in time series analysis, Phys. Rep., 441, 1, 1-46 (2007)
[28] Sugihara, G.; May, R.; Ye, H.; Hsieh, C. H.; Deyle, E.; Fogarty, M.; Munch, S., Detecting causality in complex ecosystems, Science, Article 1227079 pp. (2012)
[29] Cummins, B.; Gedeon, T.; Spendlove, K., On the efficacy of state space reconstruction methods in determining causality, SIAM J. Appl. Dyn. Syst., 14, 1, 335-381 (2015) · Zbl 1370.37041
[30] Huang, X.; Hassani, H.; Ghodsi, M.; Mukherjee, Z.; Gupta, R., Do trend extraction approaches affect causality detection in climate change studies?, Physica A, 469, 604-624 (2017)
[31] Zou, C.; Feng, J., Granger causality vs. dynamic Bayesian network inference: a comparative study, BMC Bioinformatics, 10, 1, 122 (2009)
[32] Yin, L.; Ma, X., Causality between oil shocks and exchange rate: A Bayesian, graph-based VAR approach, Physica A, 508, 434-453 (2018)
[33] Kleinberg, S.; Hripcsak, G., A review of causal inference for biomedical informatics, J. Biomed. Inform., 44, 6, 1102-1112 (2011)
[34] Barnett, L.; Seth, A. K., The MVGC multivariate granger causality toolbox: a new approach to Granger-causal inference, J. Neurosci. Methods, 223, 50-68 (2014)
[35] Geweke, J., Measurement of linear dependence and feedback between multiple time series, J. Amer. Statist. Assoc., 77, 378, 304-313 (1982) · Zbl 0492.62078
[36] Siggiridou, E.; Kugiumtzis, D., Granger causality in multivariate time series using a time-ordered restricted vector autoregressive model, IEEE Trans. Signal Process., 64, 7, 1759-1773 (2016) · Zbl 1414.94569
[37] Arnold, A.; Liu, Y.; Abe, N., Temporal causal modeling with graphical granger methods, Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Jose, California, USA, 66-75 (2007)
[38] Shojaie, A.; Michailidis, G., Discovering graphical Granger causality using the truncating lasso penalty, Bioinformatics, 26, 18, i517-i523 (2010)
[39] Bolstad, A.; Van Veen, B. D.; Nowak, R., Causal network inference via group sparse regularization, IEEE Trans. Signal Process., 59, 6, 2628-2641 (2011) · Zbl 1392.94012
[40] Yang, G. X.; Lin, W.; Wang, X. F., Reconstruction of complex directional networks with group lasso nonlinear conditional granger causality, Sci. Rep., 7, 1, 2991 (2017)
[41] Bai, Z.; Wong, W. K.; Zhang, B., Multivariate linear and nonlinear causality tests, Math. Comput. Simul., 81, 1, 5-17 (2010) · Zbl 1201.62072
[42] Diks, C.; Wolski, M., Nonlinear granger causality: guidelines for multivariate analysis, J. Appl. Econometrics, 31, 7, 1333-1351 (2016)
[43] Diks, C.; Panchenko, V., A new statistic and practical guidelines for nonparametric Granger causality testing, J. Econom. Dynam. Control, 30, 9-10, 1647-1669 (2006) · Zbl 1162.91477
[44] Hu, M.; Liang, H., A copula approach to assessing granger causality, NeuroImage, 100, 125-134 (2014)
[45] Nazlioglu, S., World oil and agricultural commodity prices: Evidence from nonlinear causality, Energy Policy, 39, 5, 2935-2943 (2011)
[46] Ancona, N.; Marinazzo, D.; Stramaglia, S., Radial basis function approach to nonlinear Granger causality of time series, Phys. Rev. E, 70, 5, Article 056221 pp. (2004)
[47] Marinazzo, D.; Pellicoro, M.; Stramaglia, S., Kernel method for nonlinear Granger causality, Phys. Rev. Lett., 100, 14, Article 144103 pp. (2008)
[48] Montalto, A.; Stramaglia, S.; Faes, L.; Tessitore, G.; Prevete, R.; Marinazzo, D., Neural networks with non-uniform embedding and explicit validation phase to assess Granger causality, Neural Netw., 71, 159-171 (2015)
[49] Amblard, P. O.; Michel, O. J.; Richard, C.; Honeine, P., A Gaussian process regression approach for testing Granger causality between time series data, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3357-3360 (2012)
[50] Hiemstra, C.; Jones, J. D., Testing for linear and nonlinear Granger causality in the stock price-volume relation, J. Finance, 49, 5, 1639-1664 (1994)
[51] Bouezmarni, T.; Rombouts, J. V.; Taamouti, A., Nonparametric copula-based test for conditional independence with applications to Granger causality, J. Bus. Econom. Statist., 30, 2, 275-287 (2012)
[52] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 1, 267-288 (1996) · Zbl 0850.62538
[53] Gretton, A.; Bousquet, O.; Smola, A.; Schölkopf, B., Measuring statistical dependence with Hilbert-Schmidt norms, (International Conference on Algorithmic Learning Theory (2005), Springer: Springer Berlin, Heidelberg), 63-77 · Zbl 1168.62354
[54] Gretton, A.; Fukumizu, K.; Teo, C. H.; Song, L.; Schölkopf, B.; Smola, A. J., A kernel statistical test of independence, Advances in Neural Information Processing Systems, 585-592 (2008), Vancouver, British Columbia, Canada
[55] Yamada, M.; Jitkrittum, W.; Sigal, L.; Xing, E. P.; Sugiyama, M., High-dimensional feature selection by feature-wise kernelized lasso, Neural Comput., 26, 1, 185-207 (2014) · Zbl 1410.68328
[56] Peng, H.; Long, F.; Ding, C., Feature selection based on mutual information criteria of max-dependency, IEEE Trans. Pattern Anal. Mach. Intell., 27, 8, 1226-1238 (2005)
[57] Yang, L. X.; Lee, C.; Su, J. J., Behavior of the standard Dickey-Fuller test when there is a fourier-form break under the null hypothesis, Econom. Lett., 159, 128-133 (2017) · Zbl 1401.62180
[58] Takens, F., Detecting strange attractors in turbulence, (Dynamical Systems and Turbulence (1981), Springer-Verlag: Springer-Verlag Heidelberg, Germany), 366-381 · Zbl 0513.58032
[59] Kugiumtzis, D., State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length, Physica D, 95, 1, 13-28 (1996) · Zbl 0914.62063
[60] Kim, H.; Eykholt, R.; Salas, J. D., Nonlinear dynamics, delay times, and embedding windows, Physica D, 127, 1-2, 48-60 (1999) · Zbl 0941.37054
[61] Zhang, Y.; Li, R.; Tsai, C. L., Regularization parameter selections via generalized information criterion, J. Amer. Statist. Assoc., 105, 489, 312-323 (2010) · Zbl 1397.62262
[62] Stoica, P.; Selen, Y., Model-order selection: a review of information criterion rules, IEEE Signal Process. Mag., 21, 4, 36-47 (2004)
[63] He, D.; Rish, I.; Parida, L., Transductive HSIC lasso, Proceedings of the 2014 SIAM International Conference on Data Mining, 154-162 (2014)
[64] Seth, A. K., A MATLAB toolbox for granger causal connectivity analysis, J. Neurosci. Methods, 186, 2, 262-273 (2010)
[65] Papana, A.; Kyrtsou, C.; Kugiumtzis, D.; Diks, C., Simulation study of direct causality measures in multivariate time series, Entropy, 15, 7, 2635-2661 (2013) · Zbl 1336.62153
[66] Chitsazan, M. A.; Fadali, M. S.; Trzynadlowski, A. M., Wind speed and wind direction forecasting using echo state network with nonlinear functions, Renew. Energy, 131, 879-889 (2019)
[67] Chen, Z.; Cai, J.; Gao, B.; Xu, B.; Dai, S.; He, B.; Xie, X., Detecting the causality influence of individual meteorological factors on local PM 2.5 concentration in the Jing-Jin-Ji region, Sci. Rep., 7, 40735 (2017)
[68] Zhai, P.; Yu, R.; Guo, Y.; Li, Q.; Ren, X.; Wang, Y.; Xu, W.; Liu, Y.; Ding, Y., J. Meteorol. Res., 30, 3, 283-297 (2015)
[69] Mekanik, F.; Imteaz, M. A.; Talei, A., Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals, Clim. Dynam., 46, 9-10, 3097-3111 (2016)
[70] Li, G.; Chen, J.; Wang, X.; Tan, Y.; Jiang, X., Modulation of pacific decadal oscillation on the relationship of El Niño with southern China rainfall during early boreal winter, Atmos. Sci. Lett., 18, 8, 336-341 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.