×

State space reconstruction parameters in the analysis of chaotic time series - the role of the time window length. (English) Zbl 0914.62063

Summary: The most common state space reconstruction method in the analysis of chaotic time series is the method of delays (MOD). Many techniques have been suggested to estimate the parameters of MOD, i.e. the time delay \(\tau\) and the embedding dimension \(m\). We discuss the applicability of these techniques with a critical view as to their validity, and point out the necessity of determining the overall time window length, \(\tau_W\), for successful embedding. Emphasis is put on the relation between \(\tau_W\) and the dynamics of the underlying chaotic system, and we suggest to set \(\tau_W\geq\tau_p\), the mean orbital period; \(\tau_p\) is approximated from the oscillations of the time series. The procedure is assessed using the correlation dimension for both synthetic and real data. For clean synthetic data, values of \(\tau_W\) larger than \(\tau_p\) always give good results given enough data and thus \(\tau_p\) can be considered as a lower limit (\(\tau_W\geq\tau_p\)). For noisy synthetic data and real data, an upper limit is reached for \(\tau_W\) which approaches \(\tau_p\) for increasing noise amplitude.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

References:

[1] Kugiumtzis, D.; Lillekjendlie, B.; Christophersen, N., Chaotic time series part I: Estimation of some invariant properties in state space, Modeling, Identification and Control, 15, 4, 205-224 (1994) · Zbl 0850.93868
[2] Lillekjendlie, B.; Kugiumtzis, D.; Christophersen, N., Chaotic time series part II: System identification and prediction, Modeling, Identification and Control, 15, 4, 225-243 (1994) · Zbl 0850.93869
[3] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712 (1980)
[4] Takens, F., Detecting strange attractors in turbulence, (Rand, D. A.; Young, L. S., Dynamical Systems and Turbulence. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, 898 (1981), Springer: Springer Berlin), 366-381, Warwick 1980 · Zbl 0513.58032
[5] Mañé, R., On the dimensions of the compact invariant sets of certain non-linear maps, (Rand, D. A.; Young, L. S., Dynamical Systems and Turbulence. Dynamical Systems and Turbulence, Lecture Notes in Mathematics, 898 (1981), Springer: Springer Berlin), 230-242, Warwick 1980 · Zbl 0544.58014
[6] Sauer, T.; Yorke, J. A.; Casdagli, M., Embedology, J. Statist. Phys., 65, 579-616 (1991) · Zbl 0943.37506
[7] Broomhead, D. S.; King, G. P., Extracting qualitative dynamics from experimental data, Physica D, 20, 217-236 (1986) · Zbl 0603.58040
[8] Caputo, J. G.; Malraison, B.; Atten, P., Determination of attractor dimension and entropy for various flows: An experimentalist’s viewpoint, (Mayer-Kress, G., Dimensions and Entropies in Chaotic Systems (1986), Springer: Springer Berlin), 180-190
[9] Albano, A. M.; Muench, J.; Schwartz, C.; Mees, A. I.; Rapp, P. E., Singular value decomposition and the Grasberger-Procaccia algorithm, Phys. Rev. A, 38, 3017-3026 (1988)
[10] Grassberger, P.; Schreiber, T.; Schaffrath, C., Non-linear time sequence analysis, Internat. J. Bifurcation and Chaos, 1, 521-547 (1991) · Zbl 0874.58029
[11] Gibson, J. F.; Farmer, J. D.; Casdagli, M.; Eubank, S., An analytic approach to practical state space reconstruction, Physica D, 57, 1-30 (1992) · Zbl 0761.62118
[12] Rosenstein, M. T.; Collins, J. J.; De Luca, C. J., Reconstruction expansion as a geometry-based framework for choosing proper delay times, Physica D, 73, 82-98 (1994)
[13] Grasberger, P.; Procaccia, I., Measuring the strangeness of strange attractors, Physica D, 9, 189-208 (1983) · Zbl 0593.58024
[14] Buzug, T.; Pfister, G., Comparison of algorithms calculating optimal embedding parameters for delay time coordinates, Physica D, 58, 127-137 (1992)
[15] Kember, G.; Fowler, A. C., A correlation function for choosing time delays in phase portrait reconstructions, Phys. Lett. A, 179, 72-80 (1993)
[16] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmospheric Sci., 20, 130 (1963) · Zbl 1417.37129
[17] Tsonis, A. A., Chaos: From Theory to Applications (1992), Plenum Press: Plenum Press New York
[18] Fraser, A. M.; Swinney, H., Independent coordinates for strange attractors from natural information, Phys. Rev. A, 33, 1134-1140 (1986) · Zbl 1184.37027
[19] Brandstater, A.; Swinney, H., Strange attractors in weakly turbulent Couette-Taylor flow, Phys. Rev. A, 35, 2207-2220 (1987)
[20] Kennel, M. B.; Brown, R.; Abarbanel, H. D.I, Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, 45, 3403-3411 (1992)
[21] Kennel, M. B.; Abarbanel, H. D.I, False neighbors and false strands: A reliable minimum embedding dimension algorithm (1995), preprint
[22] Liebert, W.; Pawelzik, K.; Schuster, H. G., Optimal embeddings of chaotic attractors from topological considerations, Europhysics Lett., 14, 521-526 (1991)
[23] Aleksić, Z., Estimating the embedding dimension, Physica D, 52, 362-368 (1991) · Zbl 0856.54043
[24] Abarbanel, H. D.I; Brown, R.; Sidorowich, J. J.; Tsimring, L. S., Analysis of observed chaotic data in physical systems, Reviews of Modern Physics, 65, 1331-1392 (1993)
[25] Vatutard, R.; Yiou, P.; Ghil, M., Singular-spectrum analysis: A toolkit for short, noisy chaotic signals, Physica D, 58, 95-126 (1992)
[26] Mees, A. I.; Rapp, P. E.; Jennings, L. S., Singular-value decomposition and embedding dimension, Phys. Rev. A, 36, 1, 340-346 (1987)
[27] Passamante, A.; Hediger, T.; Gollub, M., Fractal dimension and local intrinsic dimension, Phys. Rev. A, 39, 3640-3645 (1989)
[28] Medio, A., Chaotic Dynamics: Theory and Applications to Economics (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0783.58002
[29] Ott, E., Chaos in Dynamical Systems (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0792.58014
[30] Olsen, L. F.; Degn, H., Chaos in biological systems, Quarterly Reviews of Biophysics, 18, 165-225 (1985)
[31] Rabinovich, M. I.; Fabrikant, A. L., Stochastic self-modulation of waves in nonequilibrium media, Sov. Phys. JETP, 50, 311 (1979)
[32] Mackey, M.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 287 (1977) · Zbl 1383.92036
[33] Ding, M.; Grebogi, C.; Ott, E.; Sauer, T.; York, J. A., Estimating correlation dimension from a chaotic time series: when does a plateau onset occur?, Physica D, 69, 404-424 (1993) · Zbl 0803.58038
[34] Albano, A. M.; Passamante, A.; Farell, M.-E, Using higher-order correlations to define an embedding window, Physica D, 54, 85-97 (1991) · Zbl 0748.93005
[35] Martinerie, J. M.; Albano, A. M.; Mees, I. A.; Rapp, P. E., Mutual information, strange attractors, and the optimal estimation of dimension, Phys. Rev. A, 45, 7058-7064 (1992)
[36] D. Kugiumtzis, Assessing different norms in non-linear analysis of noisy times series, submitted to Physica D.; D. Kugiumtzis, Assessing different norms in non-linear analysis of noisy times series, submitted to Physica D.
[37] Theiler, J., Estimating fractal dimension, J. Opt. Soc. Am. A, 7, 1055-1071 (1990)
[38] Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 2,3, 155-157 (1979) · Zbl 0996.37502
[39] Jansen, B. H., Quantitative analysis of electroencephalograms: Is there chaos in the future?, Internat. J. Biomedical Computing, 27, 95-123 (1991)
[40] Kantz, H.; Schreiber, T., Dimension estimates and physiological data, Chaos, 5, 1, 143-154 (1995)
[41] Rapp, P. E.; Zimmerman, I. D.; Albano, A. M.; Deguzman, G. C.; Greenbaum, N. N., Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons, Phys. Lett. A, 110, 335-338 (1985)
[42] Babloyantz, A.; Destexhe, A., Low-dimensional chaos in an instance of epilepsy, (Proc. Natl. Acad. Sci. USA, 83 (1986)), 3513-3517 · Zbl 1254.54028
[43] Frank, G. W.; Lookman, T.; Nerenberg, M. A.H; Essex, C.; Lemieux, J.; Blume, W., Chaotic time series analysis of epileptic seizures, Physica D, 46, 427-438 (1990) · Zbl 0713.92010
[44] Pijn, J. P.; Neerven, J. V.; Noest, A.; Lopes da Silva, F. H., Chaos or noise in EEG signals; dependence on state and brain site, Electroencephalography and Clinical Neurophysiology, 79, 371-381 (1991)
[45] Pritchard, D. W.; Duke, W. S., Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG analysis, Internat. J. Neuroscience, 67, 31-80 (1992)
[46] Madsen, H., Non-linear methods for the analysis of electroencephalograms (EEG), (Master’s Thesis (1995), Department of Informatics: Department of Informatics Oslo), 186, (In Norwegian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.