×

Shock waves, black hole interiors and holographic RG flows. (English) Zbl 07917270

Summary: We study holographic renormalization group (RG) flows perturbed by a shock wave in dimensions \(d \geq 2\). The flows are obtained by deforming a holographic conformal field theory with a relevant operator, altering the interior geometry from AdS-Schwarzschild to a more general Kasner universe near the spacelike singularity. We introduce null matter in the form of a shock wave into this geometry and scrutinize its impact on the near-horizon and interior dynamics of the black hole. Using out-of-time-order correlators, we find that the scrambling time increases as we increase the strength of the deformation, whereas the butterfly velocity displays a non-monotonic behavior. We examine other observables that are more sensitive to the black hole interior, such as the thermal \(a\)-function and the entanglement velocity. Notably, the \(a\)-function experiences a discontinuous jump across the shock wave, signaling an instantaneous loss of degrees of freedom due to the infalling matter. This jump is interpreted as a ‘cosmological time skip’ which arises from an infinitely boosted length contraction. The entanglement velocity exhibits similar dependence to the butterfly velocity as we vary the strength of the deformation. Lastly, we extend our analyses to a model where the interior geometry undergoes an infinite sequence of bouncing Kasner epochs.

MSC:

83Cxx General relativity
81Txx Quantum field theory; related classical field theories
83Exx Unified, higher-dimensional and super field theories

References:

[1] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The black hole singularity in AdS/CFT, JHEP, 02, 014, 2004 · doi:10.1088/1126-6708/2004/02/014
[2] G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I, JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE].
[3] Horowitz, GT; Leung, H.; Queimada, L.; Zhao, Y., Boundary signature of singularity in the presence of a shock wave, SciPost Phys., 16, 060, 2024 · Zbl 07908927 · doi:10.21468/SciPostPhys.16.2.060
[4] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014, 2013 · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[5] Penington, G., Entanglement Wedge Reconstruction and the Information Paradox, JHEP, 09, 002, 2020 · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[6] Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y., The Page curve of Hawking radiation from semiclassical geometry, JHEP, 03, 149, 2020 · Zbl 1435.83110 · doi:10.1007/JHEP03(2020)149
[7] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
[8] A.R. Brown et al., Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].
[9] Couch, J.; Fischler, W.; Nguyen, PH, Noether charge, black hole volume, and complexity, JHEP, 03, 119, 2017 · Zbl 1377.83039 · doi:10.1007/JHEP03(2017)119
[10] A. Belin et al., Does Complexity Equal Anything?, Phys. Rev. Lett.128 (2022) 081602 [arXiv:2111.02429] [INSPIRE].
[11] Festuccia, G.; Liu, H., The Arrow of time, black holes, and quantum mixing of large N Yang-Mills theories, JHEP, 12, 027, 2007 · Zbl 1246.83200 · doi:10.1088/1126-6708/2007/12/027
[12] Grinberg, M.; Maldacena, J., Proper time to the black hole singularity from thermal one-point functions, JHEP, 03, 131, 2021 · Zbl 1461.83017 · doi:10.1007/JHEP03(2021)131
[13] Pedraza, JF; Russo, A.; Svesko, A.; Weller-Davies, Z., Sewing spacetime with Lorentzian threads: complexity and the emergence of time in quantum gravity, JHEP, 02, 093, 2022 · Zbl 1522.83304 · doi:10.1007/JHEP02(2022)093
[14] S.A.W. Leutheusser, Emergent Times in Holographic Duality, Phys. Rev. D108 (2023) 086020 [arXiv:2112.12156] [INSPIRE].
[15] Rodriguez-Gomez, D.; Russo, JG, Correlation functions in finite temperature CFT and black hole singularities, JHEP, 06, 048, 2021 · Zbl 1466.83057 · doi:10.1007/JHEP06(2021)048
[16] J. de Boer, D.L. Jafferis and L. Lamprou, On black hole interior reconstruction, singularities and the emergence of time, arXiv:2211.16512 [INSPIRE].
[17] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021, 2003 · doi:10.1088/1126-6708/2003/04/021
[18] Belinsky, VA; Khalatnikov, IM; Lifshitz, EM, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys., 19, 525, 1970 · doi:10.1080/00018737000101171
[19] Belinski, VA; Khalatnikov, IM, Effect of Scalar and Vector Fields on the Nature of the Cosmological Singularity, Sov. Phys. JETP, 36, 591, 1973
[20] Belinsky, VA; Khalatnikov, IM, On the Influence of Matter and Physical Fields Upon the Nature of Cosmological Singularities, Sov. Sci. Rev. A, 3, 555, 1981
[21] Frenkel, A.; Hartnoll, SA; Kruthoff, J.; Shi, ZD, Holographic flows from CFT to the Kasner universe, JHEP, 08, 003, 2020 · Zbl 1454.83112 · doi:10.1007/JHEP08(2020)003
[22] Hartnoll, SA; Horowitz, GT; Kruthoff, J.; Santos, JE, Gravitational duals to the grand canonical ensemble abhor Cauchy horizons, JHEP, 10, 102, 2020 · Zbl 1456.83080 · doi:10.1007/JHEP10(2020)102
[23] Hartnoll, SA; Horowitz, GT; Kruthoff, J.; Santos, JE, Diving into a holographic superconductor, SciPost Phys., 10, 009, 2021 · doi:10.21468/SciPostPhys.10.1.009
[24] Sword, L.; Vegh, D., Kasner geometries inside holographic superconductors, JHEP, 04, 135, 2022 · Zbl 1522.83243 · doi:10.1007/JHEP04(2022)135
[25] Sword, L.; Vegh, D., What lies beyond the horizon of a holographic p-wave superconductor, JHEP, 12, 045, 2022 · Zbl 1536.83077 · doi:10.1007/JHEP12(2022)045
[26] Y.-Q. Wang et al., Holographic flows with scalar self-interaction toward the Kasner universe, arXiv:2009.06277 [INSPIRE].
[27] Cáceres, E.; Kundu, A.; Patra, AK; Shashi, S., Page curves and bath deformations, SciPost Phys. Core, 5, 033, 2022 · doi:10.21468/SciPostPhysCore.5.2.033
[28] Mansoori, SAH; Li, L.; Rafiee, M.; Baggioli, M., What’s inside a hairy black hole in massive gravity?, JHEP, 10, 098, 2021 · Zbl 1476.83127 · doi:10.1007/JHEP10(2021)098
[29] Liu, Y.; Lyu, H-D; Raju, A., Black hole singularities across phase transitions, JHEP, 10, 140, 2021 · Zbl 1476.83095 · doi:10.1007/JHEP10(2021)140
[30] Caputa, P.; Das, D.; Das, SR, Path integral complexity and Kasner singularities, JHEP, 01, 150, 2022 · Zbl 1521.81133 · doi:10.1007/JHEP01(2022)150
[31] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Bath deformations, islands, and holographic complexity, Phys. Rev. D105 (2022) 066019 [arXiv:2112.06967] [INSPIRE].
[32] Das, S.; Kundu, A., RG flows and thermofield-double states in holography, JHEP, 04, 167, 2022 · Zbl 1522.81482 · doi:10.1007/JHEP04(2022)167
[33] E. Cáceres, A. Kundu, A.K. Patra and S. Shashi, Trans-IR flows to black hole singularities, Phys. Rev. D106 (2022) 046005 [arXiv:2201.06579] [INSPIRE].
[34] An, Y-S; Li, L.; Yang, F-G; Yang, R-Q, Interior structure and complexity growth rate of holographic superconductor from M-theory, JHEP, 08, 133, 2022 · Zbl 1522.83112 · doi:10.1007/JHEP08(2022)133
[35] Auzzi, R., On the time dependence of holographic complexity for charged AdS black holes with scalar hair, JHEP, 08, 235, 2022 · Zbl 1522.83119 · doi:10.1007/JHEP08(2022)235
[36] Liu, Y.; Lyu, H-D, Interior of helical black holes, JHEP, 09, 071, 2022 · Zbl 1531.83085 · doi:10.1007/JHEP09(2022)071
[37] Mirjalali, M.; Hosseini Mansoori, SA; Shahkarami, L.; Rafiee, M., Probing inside a charged hairy black hole in massive gravity, JHEP, 09, 222, 2022 · Zbl 1531.83088 · doi:10.1007/JHEP09(2022)222
[38] E. Cáceres, S. Shashi and H.-Y. Sun, Imprints of phase transitions on Kasner singularities, arXiv:2305.11177 [INSPIRE].
[39] Blacker, MJ; Ning, S., Wheeler DeWitt states of a charged AdS_4black hole, JHEP, 12, 002, 2023 · Zbl 07807119 · doi:10.1007/JHEP12(2023)002
[40] Gao, L-L; Liu, Y.; Lyu, H-D, Internal structure of hairy rotating black holes in three dimensions, JHEP, 01, 063, 2024 · Zbl 07821546 · doi:10.1007/JHEP01(2024)063
[41] C.W. Misner, Mixmaster universe, Phys. Rev. Lett.22 (1969) 1071 [INSPIRE]. · Zbl 0177.28701
[42] Breitenlohner, P.; Freedman, DZ, Positive Energy in anti-De Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B, 115, 197, 1982 · doi:10.1016/0370-2693(82)90643-8
[43] Breitenlohner, P.; Freedman, DZ, Stability in Gauged Extended Supergravity, Annals Phys., 144, 249, 1982 · Zbl 0606.53044 · doi:10.1016/0003-4916(82)90116-6
[44] Minces, P.; Rivelles, VO, Scalar field theory in the AdS/CFT correspondence revisited, Nucl. Phys. B, 572, 651, 2000 · Zbl 1068.81599 · doi:10.1016/S0550-3213(99)00833-0
[45] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D61 (2000) 044007 [hep-th/9906226] [INSPIRE].
[46] J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D62 (2000) 044041 [hep-th/0002111] [INSPIRE].
[47] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067, 2014 · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[48] V. Jahnke, Recent developments in the holographic description of quantum chaos, Adv. High Energy Phys.2019 (2019) 9632708 [arXiv:1811.06949] [INSPIRE]. · Zbl 1412.81146
[49] Sekino, Y.; Susskind, L., Fast Scramblers, JHEP, 10, 065, 2008 · doi:10.1088/1126-6708/2008/10/065
[50] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, 2016 · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[51] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051, 2015 · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[52] D.A. Roberts and B. Swingle, Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories, Phys. Rev. Lett.117 (2016) 091602 [arXiv:1603.09298] [INSPIRE].
[53] M. Blake, Universal Charge Diffusion and the Butterfly Effect in Holographic Theories, Phys. Rev. Lett.117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].
[54] M. Blake, Universal Diffusion in Incoherent Black Holes, Phys. Rev. D94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].
[55] A.P. Reynolds and S.F. Ross, Butterflies with rotation and charge, Class. Quant. Grav.33 (2016) 215008 [arXiv:1604.04099] [INSPIRE]. · Zbl 1351.83037
[56] Lucas, A.; Steinberg, J., Charge diffusion and the butterfly effect in striped holographic matter, JHEP, 10, 143, 2016 · Zbl 1390.83164 · doi:10.1007/JHEP10(2016)143
[57] DiNunno, BS; Jokela, N.; Pedraza, JF; Pönni, A., Quantum information probes of charge fractionalization in large-N gauge theories, JHEP, 05, 149, 2021 · Zbl 1466.81007 · doi:10.1007/JHEP05(2021)149
[58] Mezei, M., On entanglement spreading from holography, JHEP, 05, 064, 2017 · Zbl 1380.81348 · doi:10.1007/JHEP05(2017)064
[59] D. Giataganas, U. Gürsoy and J.F. Pedraza, Strongly-coupled anisotropic gauge theories and holography, Phys. Rev. Lett.121 (2018) 121601 [arXiv:1708.05691] [INSPIRE].
[60] U. Gürsoy, M. Järvinen, G. Nijs and J.F. Pedraza, Inverse Anisotropic Catalysis in Holographic QCD, JHEP04 (2019) 071 [Erratum ibid.09 (2020) 059] [arXiv:1811.11724] [INSPIRE].
[61] Gürsoy, U.; Järvinen, M.; Nijs, G.; Pedraza, JF, On the interplay between magnetic field and anisotropy in holographic QCD, JHEP, 03, 180, 2021 · doi:10.1007/JHEP03(2021)180
[62] Huang, W-H; Du, Y-H, Butterfly Effect and Holographic Mutual Information under External Field and Spatial Noncommutativity, JHEP, 02, 032, 2017 · Zbl 1377.81175 · doi:10.1007/JHEP02(2017)032
[63] W. Fischler, V. Jahnke and J.F. Pedraza, Chaos and entanglement spreading in a non-commutative gauge theory, JHEP11 (2018) 072 [Erratum ibid.02 (2021) 149] [arXiv:1808.10050] [INSPIRE]. · Zbl 1404.83045
[64] Eccles, S., Speeding up the spread of quantum information in chaotic systems, JHEP, 12, 019, 2021 · Zbl 1521.81036 · doi:10.1007/JHEP12(2021)019
[65] Alishahiha, M.; Davody, A.; Naseh, A.; Taghavi, SF, On Butterfly effect in Higher Derivative Gravities, JHEP, 11, 032, 2016 · Zbl 1390.83254 · doi:10.1007/JHEP11(2016)032
[66] Camanho, XO; Edelstein, JD, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP, 04, 007, 2010 · Zbl 1272.83044 · doi:10.1007/JHEP04(2010)007
[67] Camanho, XO; Edelstein, JD; Maldacena, J.; Zhiboedov, A., Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP, 02, 020, 2016 · Zbl 1388.83093 · doi:10.1007/JHEP02(2016)020
[68] Mezei, M.; Stanford, D., On entanglement spreading in chaotic systems, JHEP, 05, 065, 2017 · Zbl 1380.81349 · doi:10.1007/JHEP05(2017)065
[69] S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett.120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].
[70] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132, 2015 · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[71] Cáceres, E.; Shashi, S., Anisotropic flows into black holes, JHEP, 01, 007, 2023 · Zbl 1540.83039 · doi:10.1007/JHEP01(2023)007
[72] Hartnoll, SA, Wheeler-DeWitt states of the AdS-Schwarzschild interior, JHEP, 01, 066, 2023 · Zbl 1540.83052 · doi:10.1007/JHEP01(2023)066
[73] H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett.112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].
[74] H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].
[75] Hartnoll, SA; Neogi, N., AdS black holes with a bouncing interior, SciPost Phys., 14, 074, 2023 · Zbl 07901928 · doi:10.21468/SciPostPhys.14.4.074
[76] Damour, T.; Henneaux, M.; Nicolai, H., Cosmological billiards, Class. Quant. Grav., 20, R145, 2003 · Zbl 1138.83306 · doi:10.1088/0264-9381/20/9/201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.