×

Floer cohomology of \(\mathfrak{g}\)-equivariant Lagrangian branes. (English) Zbl 1373.53121

Summary: Building on P. Seidel and J. P. Solomon’s fundamental work [Geom. Funct. Anal. 22, No. 2, 443–477 (2012; Zbl 1250.53078)], we define the notion of a \(\mathfrak{g}\)-equivariant Lagrangian brane in an exact symplectic manifold \(M\), where \(\mathfrak{g}\subset SH^{1}(M)\) is a sub-Lie algebra of the symplectic cohomology of \(M\). When \(M\) is a (symplectic) mirror to an (algebraic) homogeneous space \(G/P\), homological mirror symmetry predicts that there is an embedding of \(\mathfrak{g}\) in \(SH^{1}(M)\). This allows us to study a mirror theory to classical constructions of Borel, Weil and Bott. We give explicit computations recovering all finite-dimensional irreducible representations of \(\mathfrak{sl}_{2}\) as representations on the Floer cohomology of an \(\mathfrak{sl}_{2}\)-equivariant Lagrangian brane and discuss generalizations to arbitrary finite-dimensional semisimple Lie algebras.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
17B99 Lie algebras and Lie superalgebras

Citations:

Zbl 1250.53078

References:

[1] A.Abbondandolo and M.Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math.59 (2006), 254-316; MR 2190223 (2006m:53137).10.1002/cpa.200902190223 · Zbl 1084.53074 · doi:10.1002/cpa.20090
[2] A.Abbondandolo and M.Schwarz, Floer homology of cotangent bundles and the loop product, Geom. Topol.14 (2010), 1569-1722; MR 2679580 (2011k:53126).10.2140/gt.2010.14.15692679580 · Zbl 1201.53087 · doi:10.2140/gt.2010.14.1569
[3] M.Abouzaid, A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci.112 (2010), 191-240; MR 2737980 (2012h:53192).10.1007/s10240-010-0028-52737980 · Zbl 1215.53078 · doi:10.1007/s10240-010-0028-5
[4] M.Abouzaid, On the wrapped Fukaya category and based loops, J. Symplectic Geom.10 (2012), 27-79; MR 2904032.10.4310/JSG.2012.v10.n1.a32904032 · Zbl 1298.53092 · doi:10.4310/JSG.2012.v10.n1.a3
[5] M.Abouzaid, Symplectic cohomology and Viterbo’s theorem, in Free loop spaces in geometry and topology, IRMA Lectures in Mathematics and Theoretical Physics, vol. 24 (European Mathematical Society, Zürich, 2015), 271-487. · Zbl 1385.53078
[6] M.Abouzaid and P.Seidel, An open string analogue of Viterbo functoriality, Geom. Topol.14 (2010), 627-718; MR 2602848 (2011g:53190).10.2140/gt.2010.14.6272602848 · Zbl 1195.53106 · doi:10.2140/gt.2010.14.627
[7] D.Auroux, Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT1 (2007), 51-91; MR 2386535 (2009f:53141). · Zbl 1181.53076
[8] D.Auroux, A beginner’s introduction to Fukaya categories, in Contact and symplectic topology, Bolyai Society Mathematical Studies, vol. 26 (János Bolyai Mathematical Society, Budapest, 2014), 85-136.10.1007/978-3-319-02036-5_3 · Zbl 1325.53001 · doi:10.1007/978-3-319-02036-5_3
[9] R.Bott, Homogeneous vector bundles, Ann. of Math. (2)66 (1957), 203-248; MR 0089473 (19,681d).10.2307/19699960089473 · Zbl 0094.35701 · doi:10.2307/1969996
[10] P. E.Chaput, L.Manivel and N.Perrin, Quantum cohomology of minuscule homogeneous spaces III. Semi-simplicity and consequences, Canad. J. Math.62 (2010), 1246-1263; MR 2760657 (2012d:14096).10.4153/CJM-2010-050-92760657 · Zbl 1219.14060 · doi:10.4153/CJM-2010-050-9
[11] T.Eguchi, K.Hori and C.-S.Xiong, Gravitational quantum cohomology, Internat. J. Modern Phys. A12 (1997), 1743-1782; MR 1439892 (99a:32027).10.1142/S0217751X970011461439892 · Zbl 1072.32500 · doi:10.1142/S0217751X97001146
[12] D. B.Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics (Consultants Bureau, New York, 1986), translated from the Russian by A. B. Sosinskiĭ;MR 874337 (88b:17001). · Zbl 0667.17005
[13] D.Gepner, Fusion rings and geometry, Comm. Math. Phys.141 (1991), 381-411; MR 1133272 (92j:81271).10.1007/BF021015111133272 · Zbl 0752.17033 · doi:10.1007/BF02101511
[14] E.Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys.159 (1994), 265-285; MR 1256989 (95h:81099).10.1007/BF021026391256989 · Zbl 0807.17026 · doi:10.1007/BF02102639
[15] A.Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, in Topics in singularity theory, American Mathematical Society Translation Series 2, vol. 180 (American Mathematical Society, Providence, RI, 1997), 103-115; MR 1767115 (2001d:14063). · Zbl 0895.32006
[16] A. B.Goncharov and L.Shen, Geometry of canonical bases and mirror symmetry, Invent. Math.202 (2015), 487-633.10.1007/s00222-014-0568-23418241 · Zbl 1355.14030 · doi:10.1007/s00222-014-0568-2
[17] V. G.Kac and A. K.Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, vol. 2 (World Scientific, Teaneck, NJ, 1987); MR 1021978 (90k:17013). · Zbl 0668.17012
[18] H.Kajiura and J.Stasheff, Homotopy algebras inspired by classical open-closed string field theory, Comm. Math. Phys.263 (2006), 553-581; MR 2211816 (2007g:18004).10.1007/s00220-006-1539-22211816 · Zbl 1125.18012 · doi:10.1007/s00220-006-1539-2
[19] I.Kaplansky and L. J.Santharoubane, Harish-Chandra modules over the Virasoro algebra, in Infinite-dimensional groups with applications (Berkeley, CA, 1984), Mathematical Sciences Research Institute Publications, vol. 4 (Springer, New York, 1985), 217-231; MR 823321 (87d:17013).10.1007/978-1-4612-1104-4_8 · Zbl 0589.17013 · doi:10.1007/978-1-4612-1104-4_8
[20] M.Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J.63 (1991), 465-516; MR 1115118 (93b:17045).10.1215/S0012-7094-91-06321-01115118 · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[21] T.Kimura, J.Stasheff and A. A.Voronov, On operad structures of moduli spaces and string theory, Comm. Math. Phys.171 (1995), 1-25; MR 1341693 (96k:14019).10.1007/BF021037691341693 · Zbl 0844.57039 · doi:10.1007/BF02103769
[22] A.Knutson, T.Lam and D. E.Speyer, Projections of Richardson varieties, J. Reine Angew. Math.687 (2014), 133-157.3176610 · Zbl 1345.14047
[23] M.Kontsevich, Homological algebra of mirror symmetry, in Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994) (Birkhäuser, Basel, 1995), 120-139; MR 1403918 (97f:32040). · Zbl 0846.53021
[24] M.Kontsevich, Lectures at ENS, Paris, spring 1998, notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, unpublished.
[25] B.Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight 𝜌, Selecta Math. (N.S.)2 (1996), 43-91; MR 1403352 (97e:17029).10.1007/BF015879391403352 · Zbl 0868.14024 · doi:10.1007/BF01587939
[26] G.Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc.3 (1990), 447-498; MR 1035415 (90m:17023).10.1090/S0894-0347-1990-1035415-61035415 · Zbl 0703.17008 · doi:10.1090/S0894-0347-1990-1035415-6
[27] G.Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc.4 (1991), 365-421; MR 1088333 (91m:17018).10.1090/S0894-0347-1991-1088333-21088333 · Zbl 0738.17011 · doi:10.1090/S0894-0347-1991-1088333-2
[28] O.Mathieu, Classification of Harish-Chandra modules over the Virasoro Lie algebra, Invent. Math.107 (1992), 225-234; MR 1144422 (93d:17034).10.1007/BF012318881144422 · Zbl 0779.17025 · doi:10.1007/BF01231888
[29] I.Mirković and K.Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2)166 (2007), 95-143; MR 2342692 (2008m:22027).10.4007/annals.2007.166.952342692 · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[30] K.Rietsch, A mirror symmetric construction of qH_T^∗(G/P)_(q), Adv. Math.217 (2008), 2401-2442; MR 2397456 (2009f:14106).10.1016/j.aim.2007.08.0102397456 · Zbl 1222.14107 · doi:10.1016/j.aim.2007.08.010
[31] A. F.Ritter, Topological quantum field theory structure on symplectic cohomology, J. Topol.6 (2013), 391-489; MR 3065181.10.1112/jtopol/jts0383065181 · Zbl 1298.53093 · doi:10.1112/jtopol/jts038
[32] A. F.Ritter and I.Smith, The monotone wrapped Fukaya category and the open-closed string map, Preprint (2015), arXiv:1201.5880v5. · Zbl 1359.53068
[33] D. A.Salamon and J.Weber, Floer homology and the heat flow, Geom. Funct. Anal.16 (2006), 1050-1138; MR 2276534 (2007k:53154).10.1007/s00039-006-0577-42276534 · Zbl 1118.53056 · doi:10.1007/s00039-006-0577-4
[34] P.Seidel, Fukaya categories and deformations, in Proceedings of the International Congress of Mathematicians, vol. II (Beijing, 2002) (Higher Education Press, Beijing, 2002), 351-360; MR 1957046 (2004a:53110). · Zbl 1014.53052
[35] P.Seidel, A biased view of symplectic cohomology, in Current developments in mathematics, Vol. 2006 (International Press, Somerville, MA, 2008), 211-253; MR 2459307 (2010k:53153).2459307 · Zbl 1165.57020
[36] P.Seidel, Fukaya categories and Picard-Lefschetz theory, Zürich Lectures in Advanced Mathematics (European Mathematical Society, Zürich, 2008); MR 2441780 (2009f:53143).10.4171/063 · Zbl 1159.53001 · doi:10.4171/063
[37] P.Seidel, Disjoinable Lagrangian spheres and dilations, Invent. Math.197 (2014), 299-359.10.1007/s00222-013-0484-x3232008 · Zbl 1305.53081 · doi:10.1007/s00222-013-0484-x
[38] P.Seidel, Lectures on categorical dynamics and symplectic topology, available athttp://math.mit.edu/∼seidel/.
[39] P.Seidel and J. P.Solomon, Symplectic cohomology and q-intersection numbers, Geom. Funct. Anal.22 (2012), 443-477; MR 2929070.10.1007/s00039-012-0159-62929070 · Zbl 1250.53078 · doi:10.1007/s00039-012-0159-6
[40] B.Siebert and G.Tian, On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator, Asian J. Math.1 (1997), 679-695; MR 1621570 (99d:14060).10.4310/AJM.1997.v1.n4.a21621570 · Zbl 0974.14040 · doi:10.4310/AJM.1997.v1.n4.a2
[41] C.Viterbo, Functors and computations in Floer cohomology II, Preprint (2003).
[42] C. A.Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994); MR 1269324 (95f:18001).10.1017/CBO9781139644136 · Zbl 0797.18001 · doi:10.1017/CBO9781139644136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.