×

Special issue on spatial moment techniques for modelling biological processes. (English) Zbl 1317.00014

From the text: We sought to gather a very general collection of articles about moment dynamics techniques and models that are motivated by, and applied to, biological processes, and publish them together in a special issue of the Bulletin of Mathematical Biology.

MSC:

00B15 Collections of articles of miscellaneous specific interest
92-06 Proceedings, conferences, collections, etc. pertaining to biology
Full Text: DOI

References:

[1] Adams TP, Holland PE, Law R, Plank MJ, Raghib M (2013) On the growth of locally interacting plants: differential equations for the dynamics of spatial moments. Ecology 94:2732-2743 · Zbl 1270.35229 · doi:10.1890/13-0147.1
[2] Agnew DJG, Green JEF, Brown TM, Simpson MJ, Binder BJ (2014) Distinguishing between mechanisms of cell aggregation using pair-correlation functions. J Theor Biol 352:16-23 · Zbl 1412.92060 · doi:10.1016/j.jtbi.2014.02.033
[3] Baker RE, Simpson MJ (2010) Correcting mean-field approximations for birth-death-movement processes. Phys Rev E 82:041905 · doi:10.1103/PhysRevE.82.041905
[4] Bolker B, Pacala SW (1997) Using moment equations to understand stochastically-driven spatial pattern formation in ecological systems. Theor Popul Biol 52:179-197 · Zbl 0890.92020 · doi:10.1006/tpbi.1997.1331
[5] Detto M, Muller-Landau HC (2013) Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Am Nat 181:E68-E82 · doi:10.1086/669678
[6] Hiebeler DE, Rier RM, Audibert J, LeClair PJ, Webber A (2015) Variability in a community-structured SIS epidemiological model. Bull Math Biol. doi:10.100/s11538-014-0017-9 · Zbl 1334.92402 · doi:10.100/s11538-014-0017-9
[7] House T (2015) Algebraic moment closure for population dynamics on discrete structures. Bull Math Biol. doi:10.1007/s11538-014-9981-3 · Zbl 1330.92008 · doi:10.1007/s11538-014-9981-3
[8] Karrer B, Newman MEJ (2010) Message passing approach for general epidemic models. Phys Rev E 82:016101 · doi:10.1103/PhysRevE.82.016101
[9] Keeling MJ, Rand DA, Morris AJ (1997) Correlation models for childhood epidemics. Proc R Soc Lond Ser B 264:1149-1156 · Zbl 0949.93059 · doi:10.1098/rspb.1997.0159
[10] Law R, Murrell DJ, Dieckmann U (2003) Population growth in space and time: spatial logistic equations. Ecology 84:252-262 · doi:10.1890/0012-9658(2003)084[0252:PGISAT]2.0.CO;2
[11] Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97:616-628 · doi:10.1111/j.1365-2745.2009.01510.x
[12] Levin SA (1994) Patchiness in marine and terrestrial systems: from individuals to populations. Philos Trans R Soc Lond Ser B 343:99-103 · doi:10.1098/rstb.1994.0013
[13] Lewis MA, Pacala S (2000) Modeling and analysis of stochastic invasion processes. J Math Biol 41:387-429 · Zbl 1002.92020 · doi:10.1007/s002850000050
[14] Mai J, Kuzovkov VN, von Niessen W (1993) A theoretical stochastic model for the \[A + \frac{1}{2}B_2 \rightarrow 0\] A+12B2→0 reaction. J Chem Phys 98:100017
[15] Mai J, Kuzovkov VN, von Niessen W (1994) A general stochastic model for the description of surface reaction systems. Phys A 203:298-315 · doi:10.1016/0378-4371(94)90158-9
[16] Markham DC, Simpson MJ, Baker RE (2015) Choosing an appropriate modelling framework for analysing multispecies co-culture cell biology experiments. Bull Math Biol. doi:10.1007/s11538-014-0050-8 · Zbl 1334.92117
[17] Mente C, Voss-Böhme A, Deutsch A (2015) Analysis of individual cell trajectories in lattice-gas cellular automaton models for migrating cell populations. Bull Math Biol. doi:10.1007/s11538-015-0079-3 · Zbl 1334.92063
[18] Murrell DJ, Dieckmann U, Law R (2004) On moment closures for population dynamics in continuous space. J Theor Biol 229:421-432 · Zbl 1440.92057 · doi:10.1016/j.jtbi.2004.04.013
[19] Plank MJ, Law R (2015) Spatial point processes and moment dynamics in the life sciences: a parsimonious derivation and some extensions. Bull Math Biol. doi:10.1007/s11538-014-0018-8 · Zbl 1334.92161 · doi:10.1007/s11538-014-0018-8
[20] Raghib M, Hill NA, Dieckmann U (2011) A multiscale maximum entropy moment closure for locally regulated space-time point process models of population dynamics. J Math Biol 62:605-653 · Zbl 1232.92074 · doi:10.1007/s00285-010-0345-9
[21] Rogers T (2011) Maximum-entropy moment-closure for stochastic systems on networks. J Stat Mech Theor Exp 2011:P05007
[22] Sharkey KJ (2008) Deterministic epidemiological models at the individual level. J Math Biol 57:311-331 · Zbl 1141.92039 · doi:10.1007/s00285-008-0161-7
[23] Sharkey KJ, Kiss IZ, Wilkinson RR, Simon PL (2015) Exact equations for SIR epidemics on tree graphs. Bull Math Biol. doi:10.1007/s11538-013-9923-5 · Zbl 1334.92428 · doi:10.1007/s11538-013-9923-5
[24] Simpson MJ, Baker RE (2011) Corrected mean-field models for spatially dependent advection-diffusion-reaction phenomena. Phys Rev E 83:051922 · doi:10.1103/PhysRevE.83.051922
[25] Simpson MJ, Binder BJ, Haridas P, Wood BK, Treloar KK, McElwain DLS, Baker RE (2013) Experimental and modelling investigation of monolayer development with clustering. Bull Math Biol 75:871-889 · Zbl 1273.92020 · doi:10.1007/s11538-013-9839-0
[26] Simpson MJ, Sharp JA, Baker RE (2014) Distinguishing between mean-field, moment dynamics and stochastic descriptions of birth-death-movement processes. Phys A Stat Mech Appl 395:236-246 · Zbl 1395.60092 · doi:10.1016/j.physa.2013.10.026
[27] Singer A (2004) Maximum entropy formulation of the Kirkwood superposition approximation. J Chem Phys 121:3657 · doi:10.1063/1.1776552
[28] Wilkinson RR, Sharkey KJ (2014) Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks. Phys Rev E 89:022808 · doi:10.1103/PhysRevE.89.022808
[29] Young WR, Roberts AJ, Stuhne G (2001) Reproductive pair correlations and the clustering of organisms. Nature 412:328-331 · doi:10.1038/35085561
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.