×

Distinguishing between mean-field, moment dynamics and stochastic descriptions of birth-death-movement processes. (English) Zbl 1395.60092

Summary: Mathematical descriptions of birth-death-movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth-death-movement process applied to a typical two-dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean-field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects; and (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean-field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean-field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth-death-movement process.

MSC:

60J28 Applications of continuous-time Markov processes on discrete state spaces
92C37 Cell biology
62M02 Markov processes: hypothesis testing
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
Full Text: DOI

References:

[1] Cai, A.; Landman, K. A.; Hughes, B. D., J. Theoret. Biol., 245, 576-594, (2009) · Zbl 1451.92063
[2] Tremel, A.; Cai, A.; Tirtaatmadja, N.; Hughes, B. D.; Stevens, G. W.; Landman, K. A.; OConnor, A. J., Chem. Eng. Sci., 64, 247-253, (2009)
[3] Simpson, M. J.; Binder, B. J.; Haridas, P.; Wood, B. K.; Treloar, K. K.; McElwain, D. L.S.; Baker, R. E., Bull. Math. Biol., 75, 871-889, (2013) · Zbl 1273.92020
[4] Murray, J. D., Mathematical biology I: an introduction, (2002), Springer Heidelberg · Zbl 1006.92001
[5] Codling, E. A.; Plank, M. J.; Benhamou, S., J. Roy. Soc. Interface, 5, 813-834, (2008)
[6] Simpson, M. J.; Landman, K. A.; Hughes, B. D., Physica A, 389, 3779-3790, (2010) · Zbl 1032.90506
[7] Mai, J.; Kuzovkov, V. N.; von Niessen, W., J. Chem. Phys., 98, 10017, (1993)
[8] Mai, J.; Kuzovkov, V. N.; von Niessen, W., Physica A, 203, 298-315, (1994)
[9] Bolker, B.; Pacala, S. W., Theor. Popul. Biol., 52, 179-197, (1997) · Zbl 0890.92020
[10] Law, R.; Dieckmann, U., Ecology, 81, 2137-2148, (2000)
[11] Law, R.; Murrell, D. J.; Dieckmann, U., Ecology, 84, 252-262, (2003)
[12] Law, R.; Illian, J.; Burslem, D. F.R. P.; Gratzer, G.; Gunatilleke, C. V.S.; Gunatilleke, A. U.N., J. Ecol., 97, 616-628, (2009)
[13] Murrell, D.; Dieckmann, U.; Law, R., J. Theoret. Biol., 229, 421-432, (2004) · Zbl 1440.92057
[14] Sharkey, K. J., J. Math. Biol., 57, 311-331, (2008) · Zbl 1141.92039
[15] Sharkey, K. J., Theor. Popul. Biol., 79, 115-129, (2011) · Zbl 1338.92140
[16] Baker, R. E.; Simpson, M. J., Phys. Rev. E, 82, 041905, (2010)
[17] Markham, D. C.; Simpson, M. J.; Baker, R. E., Phys. Rev. E, 87, 062702, (2013)
[18] Hughes, B. D., Random walks and random environments, (1995), Oxford University Press Oxford · Zbl 0820.60053
[19] Liggett, T. M., Stochastic interacting systems: contact, voter and exclusion processes, (1999), Springer-Verlag Berlin · Zbl 0949.60006
[20] Painter, K. J.; Hillen, T., Can. Appl. Math. Q., 10, 501-543, (2002) · Zbl 1057.92013
[21] Gillespie, D. T., J. Phys. Chem., 81, 2340-2631, (1977)
[22] Deroulers, C.; Aubert, M.; Badoual, M.; Grammaticos, B., Phys. Rev. E, 79, 031917, (2009)
[23] Khain, E.; Katakowski, M.; Charteris, N.; Jiang, F.; Chopp, M., Phys. Rev. E, 86, 011904, (2012)
[24] Pennington, C. J.; Hughes, B. D.; Landman, K. A., Phys. Rev. E, 84, 041120, (2011)
[25] Johnston, S. T.; Simpson, M. J.; Baker, R. E., Phys. Rev. E, 85, 051922, (2012)
[26] Singer, A., J. Chem. Phys., 121, 3657, (2004)
[27] Hansen, J.-P.; McDonald, I. R., Theory of simple liquids, (2006), Elsevier/Academic Press London
[28] Raghib, M.; Hill, N. A.; Dieckmann, U., J. Math. Biol., 62, 605-653, (2011) · Zbl 1232.92074
[29] Simpson, M. J.; Baker, R. E., Phys. Rev. E, 83, 051922, (2011)
[30] Simpson, M. J.; Treloar, K. K.; Binder, B. J.; Haridas, P.; Manton, K. J.; Leavesley, D. I.; McElwain, D. L.S.; Baker, R. E., J. Roy. Soc. Interface, 10, 20130007, (2013)
[31] Chapra, S. C.; Canale, R. P., Numerical methods for engineers, (1998), McGraw-Hill Singapore
[32] Levenberg, K., Q. Appl. Math., 2, 164-168, (1944) · Zbl 0063.03501
[33] Marquardt, D., SIAM J. Appl. Math., 11, 431-441, (1963) · Zbl 0112.10505
[34] Binder, B. J.; Simpson, M. J., Phys. Rev. E, 88, 022705, (2013)
[35] Finn, M. D.; Cox, S. M.; Byrne, H. M., J. Engrg. Math., 48, 129-155, (2004) · Zbl 1046.76010
[36] Hoshen, J.; Kopelman, R., Phys. Rev. B, 14, 3438-3445, (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.