×

Spatial networks and percolation. Abstracts from the workshop held January 17–23, 2021 (hybrid meeting). (English) Zbl 1487.00038

Summary: The classical percolation problem is to find whether there is an infinite connected component in a random set created by removing edges from a \(d\)-dimensional lattice, independently at random. Since its introduction into the mathematical literature by S. B. Broadbent and J. M. Hammersley [Proc. Camb. Philos. Soc. 53, 629–641 (1957; Zbl 0091.13901)] the subject of percolation has developed in many ways and is now one of the most exciting and active research areas in probability and statistical mechanics. In this workshop, we focused on current trends, including percolation on point sets with correlations, on spatial random graphs and networks with scale-free degree distribution or long-range edge distribution, percolation of random sets like level set of Gaussian fields or the vacant set of interlacements, conformally invariant percolation structures in the plane, and random walks or information diffusion on percolation clusters. The workshop brought together more than sixty experts and promising young researchers from probability, statistical mechanics and computer science working on all aspects of percolation and spatial networks for an unprecedented exchange of new ideas and methods, with outstanding high quality online talks.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
60-06 Proceedings, conferences, collections, etc. pertaining to probability theory
82-06 Proceedings, conferences, collections, etc. pertaining to statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
05C80 Random graphs (graph-theoretic aspects)

Citations:

Zbl 0091.13901
Full Text: DOI

References:

[1] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of Boolean functions and applications to percolation, Inst. HautesÉtudes Sci. Publ. Math. 90 (2001), 5-43. · Zbl 0986.60002
[2] Christophe Garban, Nina Holden, Avelio Sepulveda and Xin Sun. Liouville dynamical per-colation arxiv1905.06940. · Zbl 1469.82015
[3] Christophe Garban, Gábor Pete and Oded Schramm. The Fourier spectrum of critical per-colation Acta Mathematica, 205(1) (2010), 19-104. · Zbl 1219.60084
[4] Christophe Garban, Gábor Pete and Oded Schramm. The scaling limits of near-critical and dynamical percolation. J. Eur. Math. Soc. (JEMS) 20 (2018), 1195-1268. · Zbl 1392.60078
[5] Christophe Garban and Hugo Vanneuville. Exceptional times for percolation under exclusion dynamics.. Ann. Sci.Éc. Norm. Supér. (4) 52 (2019), 1-57. · Zbl 1426.82056
[6] Christophe Garban and Hugo Vanneuville. Bargmann-Fock percolation is noise sensitive. Electron. J. Probab. 25 (Paper 98) (2020), 20 pp. · Zbl 1459.60197
[7] Christophe Garban and Jeffrey E. Steif, Noise Sensitivity of Boolean Functions and Perco-lation Cambridge University Press, (2014). · Zbl 1355.06001
[8] Olle Häggström, Yuval Peres, and Jeffrey E. Steif. Dynamical percolation. Ann. Inst. H. Poincaré Probab. Statist., 33, (1997), 497-528. · Zbl 0894.60098
[9] Alan Hammond, Gábor Pete and Oded Schramm Local time on the exceptional set of dynamical percolation and the incipient infinite cluster. Ann. Probab. 43, (2015), 2949-3005. · Zbl 1341.60128
[10] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. One-arm exponent for critical 2D percolation Electron. J. Probab., 7(2) (2002), 13 pp. · Zbl 1015.60091
[11] Matthew I. Roberts and Şengül, Batı. Exceptional times of the critical dynamical Erdős-Rényi graph. Ann. Appl. Probab. 28, no.4 (2018), 2275-2308. · Zbl 1405.05168
[12] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221-288. · Zbl 0968.60093
[13] Oded Schramm and Jeffrey Steif. Quantitative noise sensitivity and exceptional times for percolation, Ann. Math. 171 (2010), 619-672, · Zbl 1213.60160
[14] Stanislav Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math., 333(3) (2001), 239-244. · Zbl 0985.60090
[15] Stanislav Smirnov and Wendelin Werner. Critical exponents for two-dimensional percolation Math. Res. Lett. 8(5-6) (2001), 729-744. · Zbl 1009.60087
[16] Jeffrey E. Steif. A survey of dynamical percolation. Fractal geometry and stochastics, IV, Birkhauser, (2009), 145-174. · Zbl 1186.60106
[17] Vincent Tassion and Hugo Vanneuville. Noise sensitivity via differential inequalities, arXiv:2011.04572. References
[18] M. T. Barlow. Loop erased walks and uniform spanning trees. 34:1-32, 2016. · Zbl 1343.05139
[19] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm. Uniform spanning forests. Ann. Probab., 29(1):1-65, 2001. · Zbl 1016.60009
[20] P. Erdös and S. J. Taylor. Some intersection properties of random walk paths. Acta Math. Acad. Sci. Hungar., 11:231-248, 1960. · Zbl 0096.33302
[21] T. Hutchcroft. Wired cycle-breaking dynamics for uniform spanning forests. Annals of Prob-ability. to appear. · Zbl 1364.05062
[22] T. Hutchcroft. Interlacements and the wired uniform spanning forest. 2015. · Zbl 1391.60021
[23] T. Hutchcroft. Universality of high-dimensional spanning forests and sandpiles. Probab. The-ory Related Fields, 176(1-2):533-597, 2020. · Zbl 1434.60296
[24] G. F. Lawler. Intersections of random walks. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991. · Zbl 1228.60004
[25] G. F. Lawler. The logarithmic correction for loop-erased walk in four dimensions. In Pro-ceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), number Special Issue, pages 347-361, 1995. · Zbl 0889.60075
[26] R. Lyons, B. J. Morris, and O. Schramm. Ends in uniform spanning forests. Electron. J. Probab., 13:no. 58, 1702-1725, 2008. · Zbl 1191.60016
[27] R. Lyons, R. Pemantle, and Y. Peres. Conceptual proofs of L log L criteria for mean behavior of branching processes. Ann. Probab., 23(3):1125-1138, 1995. · Zbl 0840.60077
[28] R. Lyons and Y. Peres. Probability on Trees and Networks. Cambridge University Press, New York, 2016. · Zbl 1376.05002
[29] R. Pemantle. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab., 19(4):1559-1574, 1991. · Zbl 0758.60010
[30] J. Schweinsberg. The loop-erased random walk and the uniform spanning tree on the four-dimensional discrete torus. Probability Theory and Related Fields, 144(3-4):319-370, 2009. · Zbl 1183.60039
[31] D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages 296-303. ACM, New York, 1996. References · Zbl 0946.60070
[32] M. Aizenman, H. Duminil-Copin, V. Sidoravicius. Random currents and continuity of Ising model’s spontaneous magnetization. Comm. Math. Phys. 334 (2015), 719-742. · Zbl 1315.82004
[33] I. Benjamini, G. Kalai and O. Schramm. Noise sensitivity of Boolean functions and appli-cations to percolation. Inst. HautesÉtudes Sci. Publ. Math. 90 (1999), 5-43. · Zbl 0986.60002
[34] J. van den Berg and J. Steif. On the existence and nonexistence of finitary codings for a class of random fields. Ann. Probab. 27 (1999), 1501-522. · Zbl 0968.60091
[35] A. Blanca, P. Caputo, A. Sinclair, and E. Vigoda. Spatial mixing and non-local Markov chains. Random Struct Alg. 55 (2019), 584-614. · Zbl 1427.60150
[36] E. I. Broman and J. E. Steif. Dynamical stability of percolation for some interacting particle systems and ��-movability. Ann. Probab. 34 (2006), 539-576. · Zbl 1107.82058
[37] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6 (1996), 695-750. · Zbl 0867.60043
[38] H. Duminil-Copin, I. Manolescu, and V. Tassion. Planar random-cluster model: fractal properties of the critical phase. [arXiv:2007.14707] · Zbl 1475.60195
[39] P. Galicza and G. Pete. Sparse reconstruction in spin systems I: iid spins. [arXiv:2010.10483]
[40] C. Garban, G. Pete and O. Schramm. The Fourier spectrum of critical percolation. Acta Mathematica 205 (2010), 19-104. · Zbl 1219.60084
[41] C. Garban, G. Pete and O. Schramm. The scaling limits of near-critical and dynamical percolation. J. Eur. Math. Soc. 20 (2018), 1195-1268. · Zbl 1392.60078
[42] F. Martinelli, E. Olivieri, and R. H. Schonmann. For 2-d lattice spin systems weak mixing implies strong mixing. Commun. Math. Phys. 165 (1994), 33-47. · Zbl 0811.60097
[43] K. Marton. Logarithmic Sobolev inequalities in discrete product spaces: A proof by a trans-portation cost distance. Combin. Probab. Comput. 28 (2019), 919-935. [arXiv:1507.02803] · Zbl 1434.60189
[44] R. O’Donnell, M. Saks, O. Schramm, and R. Servedio. Every decision tree has an influential variable. In: 46th IEEE Symposium on Foundations of Computer Science, pp. 31-39, 2005.
[45] O. Schramm and J. E. Steif. Quantitative noise sensitivity and exceptional times for perco-lation. Ann. Math. 171(2) (2010), 619-672. · Zbl 1213.60160
[46] D. W. Stroock and B. Zegarlinski. The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys. 149 (1992), 175-194. · Zbl 0758.60070
[47] V. Tassion and H. Vanneuville. Noise sensitivity of percolation via differential inequalities. [arXiv:2011.04572] References
[48] S. Chatterjee and R. Durrett, Contact processes on random graphs with power law degree distributions have critical value zero, Ann. Probab. 37 (2009), 2332-2356. · Zbl 1205.60168
[49] V. H. Can, Metastability for the Contact Process on the Preferential Attachment Graph, Internet Mathematics (2017). · Zbl 1491.05165
[50] E. Jacob, A. Linker, and P. Mörters,Metastability of the contact process on fast evolving scale-free networks, Ann. Appl. Probab. 29 (2019), 265-2699. · Zbl 1441.05207
[51] E. Jacob, A. Linker, and P. Mörters,Metastability of the contact process on slowly evolving scale-free networks. Work in progress. · Zbl 1441.05207
[52] T. Mountford, D. Valesin, and Q. Yao,Metastable densities for the contact process on power law random graphs, Electron. J. Probab. 13 (2013), 1-36. · Zbl 1281.82018
[53] G. Amir and R. Baldasso, Percolation in majority dynamics, Electronic Journal of Proba-bility, 25 (2020). · Zbl 1439.82040
[54] G. Amir, R. Baldasso and N. Beilin, Majority dynamics and the median process: connec-tions, convergence and some new conjectures, arXiv preprint arXiv:1911.08613 (2019).
[55] L. R. Fontes, R. H. Schonmann and V. Sidoravicius Stretched exponential fixation in sto-chastic Ising models at zero temperature, Communications in mathematical physics 228 (3), (2002) 495-518. · Zbl 1004.82013
[56] M. Damron and A. Sen, Zero-temperature Glauber dynamics on the 3-regular tree and the median process, Probability Theory and Related Fields (2020): 1-44
[57] C. Alves and R. Baldasso, Sharp threshold for two-dimensional majority dynamics percola-tion., arXiv preprint arXiv:1912.06524 (2019).
[58] R. Morris, Zero-temperature Glauber dynamics on Z d , Probability Theory and Related Fields (149) (3-4) (2011) 417-434 · Zbl 1236.60095
[59] Bramson M, Durrett R, Swindle G. Statistical mechanics of crabgrass. The Annals of Prob-ability. 1989 Apr 1:444-81. · Zbl 0682.60090
[60] Harris TE. Contact interactions on a lattice. The Annals of Probability. 1974 Dec 1:969-88. · Zbl 0334.60052
[61] Liggett TM, Steif JE. Stochastic domination: the contact process, Ising models and FKG measures. InAnnales de l’IHP Probabilités et statistiques 2006 (Vol. 42, No. 2, pp. 223-243). · Zbl 1087.60074
[62] M. Aizenman, J.T. Chayes, L. Chayes, and C.M. Newman. Discontinuity of the mag-netization in one-dimensional 1/|x − y| 2 ising and potts models. Journal of Statistical Physics, 50(1-2):1-40, 1988. · Zbl 1084.82514
[63] M. Aizenman and C.M. Newman. Discontinuity of the percolation density in one dimensional 1/|x−y| 2 percolation models. Communications in Mathematical Physics, 107(4):611-647, 1986. · Zbl 0613.60097
[64] H. Duminil-Copin, C. Garban, and V. Tassion. Long-range models in 1D revisited. Preprint, 2020.
[65] H. Duminil-Copin, C. Garban, and V. Tassion. Long-range order for critical Book-Ising and Book-Percolation. preprint, 2020.
[66] F.J. Dyson. Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet, Comm. Math. Phys. 12(3): 212-215, 1969.
[67] J. Fröhlich and T. Spencer. The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy. Communications in Mathematical Physics, 84(1):87-101, 1982. · Zbl 1110.82302
[68] J.Z. Imbrie and C.M. Newman. An intermediate phase with slow decay of correlations in one dimensional 1/|x − y| 2 percolation, ising and potts models. Communications in mathematical physics, 118(2):303-336, 1988.
[69] C.M. Newman and L.S. Schulman. One dimensional 1/|j − i| s percolation models: The existence of a transition for s ≤ 2. Communications in Mathematical Physics, 104(4):547-571, 1986. · Zbl 0604.60097
[70] D.J. Thouless. Long-range order in one-dimensional Ising systems. Physical Review, 187(2):732, 1969.
[71] T. Hutchcroft. Power-law bounds for long-range percolation below the upper critical dimen-sion. Probability Theory and Related Fields, to appear. · Zbl 1475.60200
[72] T. Hutchcroft. Locality of the critical probability for transitive graphs of exponential growth. Ann. Probab., 2019. To appear.
[73] J. Hermon and T. Hutchcroft. No percolation at criticality on certain groups of intermediate growth. Int. Math. Res. Not. IMRN, 2019. To appear. · Zbl 1490.60273
[74] N. Berger. Transience, recurrence and critical behavior for long-range percolation. Comm. Math. Phys., 226(3):531-558, 2002. · Zbl 0991.82017
[75] J. Ding and A. Sly. Distances in critical long range percolation. arXiv preprint arXiv:1303.3995, 2013.
[76] C. M. Newman and L. S. Schulman. One dimensional 1/|j − i| s percolation models: The existence of a transition for s ≤ 2. Communications in Mathematical Physics, 104(4):547-571, 1986. · Zbl 0604.60097
[77] M. Aizenman and C. M. Newman. Discontinuity of the percolation density in one-dimensional 1/|x − y| 2 percolation models. Comm. Math. Phys., 107(4):611-647, 1986. · Zbl 0613.60097
[78] L. S. Schulman. Long range percolation in one dimension. Journal of Physics A: Mathemat-ical and General, 16(17):L639, 1983.
[79] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys., 128(2):333-391, 1990. · Zbl 0698.60100
[80] M. Heydenreich, R. van der Hofstad, and A. Sakai. Mean-field behavior for long-and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys., 132(6):1001-1049, 2008. · Zbl 1152.82007
[81] L.-C. Chen and A. Sakai. Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab., 43(2):639-681, 2015. References · Zbl 1342.60162
[82] N. Berger Transience, recurrence and critical behavior for long-range percolation, Commun. Math. Phys. 226.3 (2002). · Zbl 0991.82017
[83] P. Gracar, M. Heydenreich, C. Mönch and P. Mörters Recurrence versus Transience for Weight-Dependent Random Connection Models, ArXiv 1911.04350 (2021).
[84] P. Gracar, A. Grauer and P. Mörters, Chemical distance in geometric random graphs with long edges and scale-free degree distribution, in preparation (2021).
[85] P. Gracar, L. Lüchtrath and P. Mörters, Percolation phase transition in weight-dependent random connection models , ArXiv 2003.04040 (2021).
[86] E. Jacob and P. Mörters. Spatial preferential attachment networks: power laws and cluster-ing coefficients. Ann. Appl. Probab. 25.2 (2015). · Zbl 1310.05185
[87] E. Candellero and A. Stauffer, Coexistence of competing first passage percolation on hyper-bolic graphs, Annales de l’Institut Henri Poincaré, To appear (2020).
[88] E. Candellero and A. Stauffer, First passage percolation in hostile environment is not mono-tone, Preprint. · Zbl 07904047
[89] T. Finn and A. Stauffer, Non-equilibrium multi-scale analysis and coexistence in competing first passage percolation, Arxiv preprint: https://arxiv.org/abs/2009.05463.
[90] V. Sidoravicius and A. Stauffer, Multi-particle diffusion limited aggregation, Invent. Math. 218 (2019), no. 2, 491-571. · Zbl 1491.60183
[91] R. Albert, L. Barabási. Statistical mechanics of complex networks, Rev. Mod. Phys. 74:1 (2012), p. 47-97. · Zbl 1205.82086
[92] M. Bode, N. Fountoulakis, T. Müller, On the largest component of a hyperbolic model of complex networks, Elec. J. of Combinatorics 22(3) (2015), P3.24. · Zbl 1327.05301
[93] M. Bode, N. Fountoulakis, T. Müller. The probability of connectivity in a hyperbolic model of complex networks, Random Structures and Algorithms, 49 (1) (2017), p. 65-94. · Zbl 1344.05123
[94] M. Boguñá, F. Papadopoulos, D. Krioukov. Sustaining the internet with hyperbolic mapping, Nature Communications, 1:62, 2010.
[95] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá. Hyperbolic geometry of complex networks, Phys. Rev. E, 82:036106, 2010.
[96] J.B. Gouéré and M. Théret, Positivity of the time constant in a continuous model of first passage percolation, Electron. J. Probab. 22 (2017), no. 49, 1-21. · Zbl 1364.60132
[97] J.B. Gouéré and M. Théret, Continuity of the time constant in a continuous model of first passage percolation, preprint (2020).
[98] M. Aizenman and C. M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys., 36(1-2):107-143, 1984. · Zbl 0586.60096
[99] D. J. Barsky and M. Aizenman. Percolation critical exponents under the triangle condition. Ann. Probab., 19(4):1520-1536, 1991. · Zbl 0747.60093
[100] R. Fitzner and R. van der Hofstad. Mean-field behavior for nearest-neighbor percolation in d > 10. Electron. J. Probab., 22:Id 43 (65 pp.), 2017. · Zbl 1364.60130
[101] T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys., 128(2):333-391, 1990. · Zbl 0698.60100
[102] T. Hara and G. Slade. Mean-field behaviour and the lace expansion. In Geoffrey Grimmett, editor, Probability and phase transition (Cambridge, 1993), volume 420 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 87-122. Kluwer Acad. Publ., Dordrecht, 1994. · Zbl 0831.60107
[103] M. Heydenreich, R. van der Hofstad, G. Last, and K. Matzke. Lace expansion and mean-field behavior for the random connection model. Preprint arXiv:1908.11356 [math.PR], 2020.
[104] M. Heydenreich, R. van der Hofstad, and A. Sakai. Mean-field behavior for long-and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys., 132(6):1001-1049, 2008. · Zbl 1152.82007
[105] M. Heydenreich and K. Matzke. Critical site percolation in high dimension. J. Stat. Phys., 181(3):816-853, 2020. · Zbl 1458.60101
[106] M. Heydenreich and R. van der Hofstad. Progress in high-dimensional percolation and ran-dom graphs. CRM Short Courses. Springer, Cham; Centre de Recherches Mathématiques, Montreal, QC, 2017. · Zbl 1445.60003
[107] G. Kozma and A. Nachmias. The Alexander-Orbach conjecture holds in high dimensions. Invent. Math., 178(3):635-654, 2009. · Zbl 1180.82094
[108] G. Kozma and A. Nachmias. Arm exponents in high dimensional percolation. J. Amer. Math. Soc., 24(2):375-409, 2011. · Zbl 1219.60085
[109] M. Albenque, N. Holden, and X. Sun. Scaling limit of triangulations of polygons. Electronic Journal of Probability, 25(135):1-43, 2020. · Zbl 1470.60025
[110] O. Bernardi, N. Holden, and X. Sun. Percolation on triangulations: a bijective path to Liouville quantum gravity. ArXiv e-prints, July 2018, 1807.01684.
[111] J. Bettinelli and G. Miermont. Compact Brownian surfaces I: Brownian disks. Probab. Theory Related Fields, 167(3-4):555-614, 2017. MR 3627425 · Zbl 1373.60062
[112] E. Gwynne, N. Holden, and X. Sun. Joint scaling limit of site percolation on ran-dom triangulations in the metric and peanosphere sense. ArXiv e-prints, May 2019, 1905.06757.
[113] C. Garban, N. Holden, A. Sepúlveda, and X. Sun. Liouville dynamical percolation. ArXiv e-prints, May 2019, 1905.06940.
[114] E. Gwynne and J. Miller. Convergence of percolation on uniform quadrangulations with boundary to SLE 6 on 8/3-Liouville quantum gravity. ArXiv e-prints, Janu-ary 2017, 1701.05175.
[115] N. Holden and X. Sun. Convergence of uniform triangulations under the Cardy embedding. ArXiv e-prints, May 2019, 1905.13207.
[116] C. Garban, G. Pete, and O. Schramm. The Fourier spectrum of critical percolation. Acta Math., 205(1):19-104, 2010. MR 2736153 · Zbl 1219.60084
[117] C. Garban, G. Pete, and O. Schramm. Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc., 26(4):939-1024, 2013. MR 3073882 · Zbl 1276.60111
[118] C. Garban, G. Pete, and O. Schramm. The scaling limits of near-critical and dy-namical percolation. J. Eur. Math. Soc., 20(5):1195-1268, 2018. MR 3790067 · Zbl 1392.60078
[119] N. Holden, G. F. Lawler, X. Li, and X. Sun. Minkowski content of Brownian cut points. ArXiv e-prints, March 2018, 1803.10613.
[120] N. Holden, X. Li, and X. Sun. Natural parametrization of percolation interface and pivotal points. ArXiv e-prints, April 2018, 1804.07286.
[121] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab., 41(4):2880-2960, 2013. MR 3112934 · Zbl 1282.60014
[122] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math., 210(2):319-401, 2013. MR 3070569 · Zbl 1278.60124
[123] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s for-mula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239-244, 2001. MR 1851632 (2002f:60193) · Zbl 0985.60090
[124] J. Aru, T. Lupu, A. Sepúlveda, The first passage sets of the 2D Gaussian free field, Proba-bility Theory and Related Fields (2019).
[125] J. Aru, T. Lupu, A. Sepúlveda, The first passage sets of the 2D Gaussian free field: con-vergence and isomorphisms, Communications in Mathematical Physics (2020). · Zbl 1446.60081
[126] J. Aru, T. Lupu, A. Sepúlveda, Extremal distance and conformal radious of CLE 4 loop, Arxiv.
[127] J. Aru, A. Sepúlveda, W. Werner On bounded-type thin local sets of the two-dimensional Gaussian free field, Journal of the Institute of Mathematics of Jussieu (2017).
[128] G. Lawler, W. Werner, The Brownian loop soup, Probability Theory and Related Fields (2014).
[129] G. Lawler, J. Trujillo-Ferreras Random walk loop soup, Transactions of the American Math-ematical Society (2007).
[130] T. Lupu, W. Werner, The random pseudo-metric on a graph defined via the zero-set of the Gaussian free field on its metric graph, Probability Theory and Related Fields (2016)
[131] O. Schramm, S. Sheffield, A contour line of the continuum Gaussian free field, Probability Theory and Related Fields (2013) · Zbl 1331.60090
[132] S. Sheffield, Gaussian free fields for mathematicians, Probability Theory and Related Fields (2007). · Zbl 1132.60072
[133] S. Sheffield, W. Werner, Conformal loop ensembles: the Markovian characterization and the loop-soup construction, Annals of Mathematics (2012). · Zbl 1271.60090
[134] W. Werner, E. Powell, Lecture notes on the Gaussian Free Field. Arxiv. References
[135] D. Chelkak and S. Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables, Invent. Math., 189(3) (2012), 515-580. · Zbl 1257.82020
[136] H. Duminil-Copin, K. Kozlowski, D. Krachun, and I. Manolescu, Rotational invariance in critical planar lattice models, arXiv:2012.11672 (2020).
[137] H. Duminil-Copin, K. Kozlowski, D. Krachun, I. Manolescu, and T. Tikhonovskaia, On the six-vertex model’s free energy, arXiv:2012.11675 (2020).
[138] G.R. Grimmett, and I. Manolescu, Inhomogeneous bond percolation on square, triangular and hexagonal lattices. Ann. Probab. 41(4):2990-3025, 2013. · Zbl 1284.60167
[139] S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. of Math., 172(2) (2010), 1435-1467. · Zbl 1200.82011
[140] I. Benjamini, G. Kalai, O. Schramm, Noise sensitivity of Boolean functions and applications to percolation, Publications Mathématiques de l’Institut des HautesÉtudes Scientifiques 90.1 (1999): 5-43. · Zbl 0986.60002
[141] C. Garban, H. Vanneuville, Bargmann-Fock percolation is noise sensitive, Electronic Journal of Probability 25 (2020). · Zbl 1459.60197
[142] H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Communications in mathematical physics 74.1 (1980): 41-59. · Zbl 0441.60010
[143] S. Muirhead, A. Rivera, H. Vanneuville, with an appendix by L. Köhler-Schindler, The phase transition for planar Gaussian percolation models without FKG, arXiv preprint arXiv:2010.11770 (2020).
[144] V. Tassion, H. Vanneuville, Noise sensitivity of percolation via differential inequalities, arXiv preprint arXiv:2011.04572 (2020).
[145] V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probab. Theory Related Fields, 153(3-4):511-542, 2012. · Zbl 1257.82014
[146] B. Bollobás and O. Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields, 136(3):417-468, 2006. · Zbl 1100.60054
[147] H. Duminil-Copin, C. Hongler, and P. Nolin. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Comm. Pure Appl. Math., 64(9):1165-1198, 2011. · Zbl 1227.82015
[148] H. Duminil-Copin, V. Sidoravicius, and V. Tassion. Continuity of the phase transition for planar random-cluster and Potts models with 1 ≤ q ≤ 4. Comm. Math. Phys., 349(1):47-107, 2017. · Zbl 1357.82011
[149] H. Duminil-Copin and V. Tassion. RSW and box-crossing property for planar percolation. In Proceedings of the international congress of Mathematical Physics, 2016.
[150] H. Duminil-Copin and V. Tassion. Renormalization of crossing probabilities in the planar random-cluster model. To appear in Dobrushin’s volume of Moscow Mathematical Journal, 2020. · Zbl 1482.82034
[151] H. Kesten. The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys., 74(1):41-59, 1980. · Zbl 0441.60010
[152] L. Köhler-Schindler and V. Tassion. Crossing probabilities for planar percolation. arXiv:2011.04618, 2020.
[153] L. Russo. A note on percolation. Z. Wahrscheinlichkeit., 43(1):39-48, 1978. · Zbl 0363.60120
[154] L. Russo. On the critical percolation probabilities. Z. Wahrscheinlichkeit., 56(2):229-237, 1981. · Zbl 0457.60084
[155] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239-244, 2001. · Zbl 0985.60090
[156] P. D. Seymour and D. J. A. Welsh. Percolation probabilities on the square lattice. In Annals of Discrete Mathematics, volume 3, pages 227-245. Elsevier, 1978. · Zbl 0405.60015
[157] V. Tassion. Crossing probabilities for Voronoi percolation. Ann. Probab., 44(5):3385-3398, 2016. References · Zbl 1352.60130
[158] J. Bricmont, J. L. Lebowitz, and C. Maes. Percolation in strongly correlated systems: the massless Gaussian field. J. Statist. Phys., 48(5-6):1249-1268, 1987. · Zbl 0962.82520
[159] A. Chiarini and M. Nitzschner. Entropic repulsion for the gaussian free field conditioned on disconnection by level-sets. Probab. Theory Related Fields, 177(1):525-575, 2020. · Zbl 1476.60058
[160] A. Drewitz, B. Ráth, and A. Sapozhnikov. On chemical distances and shape theorems in percolation models with long-range correlations. J. Math. Phys., 55(8):083307, 30, 2014. · Zbl 1301.82027
[161] H. Duminil-Copin, S. Goswami, P.-F. Rodriguez, and F. Severo. Equality of critical parame-ters for percolation of Gaussian free field level-sets. Preprint, available at arXiv:2002.07735, 2020.
[162] S. Goswami, P.-F. Rodriguez, and F. Severo. On the radius of Gaussian free field excursion clusters. Preprint, available at arXiv:2101.02200, 2021.
[163] M. Nitzschner. Disconnection by level sets of the discrete Gaussian free field and entropic repulsion. Electron. J. Probab., 23:1-21, 2018. · Zbl 1402.60033
[164] M. Nitzschner and A.-S. Sznitman. Solidification of porous interfaces and disconnection. To appear in J. Eur. Math. Soc, DOI:10.4171/JEMS/973, 2017. · Zbl 1475.60145 · doi:10.4171/JEMS/973
[165] S. Popov and B. Ráth. On decoupling inequalities and percolation of excursion sets of the Gaussian free field. J. Stat. Phys., 159(2):312-320, 2015. · Zbl 1328.82026
[166] S. Popov and A. Teixeira. Soft local times and decoupling of random interlacements. J. Eur. Math. Soc., 17(10):2545-2593, 2015. · Zbl 1329.60342
[167] E. B. Procaccia, R. Rosenthal, and A. Sapozhnikov. Quenched invariance principle for simple random walk on clusters in correlated percolation models. Probab. Theory Related Fields, 166(3-4):619-657, 2016. · Zbl 1353.60034
[168] P.-F. Rodriguez and A.-S. Sznitman. Phase transition and level-set percolation for the Gauss-ian free field. Comm. Math. Phys., 320(2):571-601, 2013. · Zbl 1269.82028
[169] A. Sapozhnikov. Random walks on infinite percolation clusters in models with long-range correlations. Ann. Probab., 45(3):1842-1898, 2017. · Zbl 1374.60194
[170] A.-S. Sznitman. Disconnection and level-set percolation for the Gaussian free field. J. Math. Soc. Japan, 67(4):1801-1843, 2015. · Zbl 1337.60246
[171] A.-S. Sznitman. On macroscopic holes in some supercritical strongly dependent percolation models. Ann. Probab., 47(4):2459-2493, 2019. · Zbl 1467.60081
[172] Cao, S., Wilson loop expectations in lattice gauge theories with finite gauge groups, Commun. Math. Phys. 380, 1439-1505 (2020). · Zbl 1483.81114
[173] Chatterjee, S., Wilson loops in Ising lattice gauge theory, Commun. Math. Phys. 377, 307-340 (2020). · Zbl 1441.81122
[174] Forsström, M. P., Lenells, J., Viklund, F., Wilson loops in finite Abelian lattice gauge theories, preprint (2020).
[175] Juhan Aru and Janne Junnila. Reconstructing the base field from multiplicative imaginary chaos. arXiv preprint arXiv:2006.05917, 2020. · Zbl 1487.60073
[176] Jürg Fröhlich and Thomas Spencer. The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Communications in Mathematical Physics, 81(4):527-602, 1981.
[177] Jürg Fröhlich and Thomas Spencer. The Berezinskii-Kosterlitz-Thouless transition (energy-entropy arguments and renormalization in defect gases). In Scaling and Self-Similarity in Physics, pages 29-138. Springer, 1983.
[178] Christophe Garban and Avelio Sepúlveda. Statistical reconstruction of the Gaussian free field and KT transition. arXiv preprint arXiv:2002.12284, 2020.
[179] Kosterlitz, John Michael, and David James Thouless. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics 1973. References
[180] J. Bricmont, J. L. Lebowitz, and C. Maes. Percolation in strongly correlated systems: the massless Gaussian field. J. Statist. Phys., 48(5-6):1249-1268, 1987. · Zbl 0962.82520
[181] A. Drewitz, A. Prévost, and P.-F. Rodriguez. Cluster capacity functionals and isomorphism theorems for gaussian free fields. Preprint, available at arXiv:2101.05800, 2021.
[182] G. Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. · Zbl 0926.60004
[183] Springer-Verlag, Berlin, second edition, 1999.
[184] T. Lupu. From loop clusters and random interlacements to the free field. Ann. Probab., 44(3):2117-2146, 2016. · Zbl 1348.60141
[185] A. Weinrib. Long-range correlated percolation. Phys. Rev. B, 29:387-395, Jan 1984. References
[186] K.S. Alexander. Boundedness of level lines for two-dimensional random fields. Ann. Probab., 24(4):1653-1674, 1996. · Zbl 0866.60084
[187] V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probab. Theory Related Fields, 153:511-542, 2012. · Zbl 1257.82014
[188] V. Beffara and D. Gayet. Percolation of random nodal lines. Publ. Math. IHES, 126(1):131-176, 2017. · Zbl 1412.60131
[189] E. Bogomolny, R. Dubertrand, and C. Schmit. SLE description of the nodal lines of random wavefunctions. J. Phys. A: Math. Theor., 40(3):381, 2006. · Zbl 1105.81038
[190] B. Bollobás and O. Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields, 136:417-468, 2006. · Zbl 1100.60054
[191] S. Chatterjee. Superconcentration and related topics. Springer, 2014. · Zbl 1288.60001
[192] A.M. Dykhne. Conductivity of a two-dimensional two-phase system. Zh. Eksp. Teor. Fiz., 59:110-115, 1970.
[193] C. Garban and H. Vanneuville. Bargmann-Fock percolation is noise sensitive. arXiv preprint arXiv:1906.02666, 2019. · Zbl 1459.60197
[194] H. Kesten. The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys., 74:41-59, 1980. · Zbl 0441.60010
[195] S. Muirhead, A. Rivera and H. Vanneuville (with an appendix by L. Köhler-Schindler), The phase transition for planar Gaussian percolation models without FKG, arXiv preprint arXiv:2010.11770 (2020).
[196] S. Muirhead and H. Vanneuville. The sharp phase transition for level set percolation of smooth planar Gaussian fields. Ann. I. Henri Poincaré Probab. Stat., 56(2):1358-1390, 2020. · Zbl 1462.60065
[197] A. Rivera. Talagrand’s inequality in planar Gaussian field percolation. arXiv preprint arXiv:1905.13317, 2019. · Zbl 1480.60295
[198] A. Rivera and H. Vanneuville. The critical threshold for Bargmann-Fock percolation. Ann. Henri Lebesgue, 3:169-215, 2020. · Zbl 1434.60302
[199] R. Zallen and H. Scher. Percolation on a continuum and the localization-delocalization transition in amorphous semiconductors. Phys. Rev. B., 4:4471-4479, 1971. References
[200] H. Duminil-Copin, A. Raoufi, V. Tassion, Sharp phase transition for the random-cluster and Potts models via decision trees. Ann. Math. 189 (2019), 75-99. · Zbl 1482.82009
[201] H. Duminil-Copin, A. Raoufi, V. Tassion, Subcritical phase of d-dimensional Poisson-Boolean percolation and its vacant set. Ann. Henri Leb. 3 (2020), 677-700. · Zbl 1454.82016
[202] G. Last, G. Peccati, D. Yogeshwaran. Phase transitions and noise sensitivity on the Poisson space via stopping sets and decision trees. arXiv:2101.07180 (2021).
[203] G. Last, M. Penrose. Lectures on the Poisson Process. Cambridge University Press., Cam-bridge (2017).
[204] R. O’Donnell, M. Saks, O. Schramm, R. Servedio, Every decision tree has an influential variable. FOCS, IEEE (2005), 31-39.
[205] B. Bollobás and O. Riordan. The diameter of a scale-free random graph. Combinatorica, 24(1):5-34, Jan 2004. · Zbl 1047.05038
[206] S. Dereich, C. Mönch, and P. Mörters. Typical distances in ultrasmall random networks. Advances in Applied Probability, 44(2):583-601, 2012. · Zbl 1244.05199
[207] S. Dereich and P. Mörters. Random networks with sublinear preferential attachment: degree evolutions. Electronic Journal of Probability, 14:1222-1267, 2009. · Zbl 1185.05127
[208] R. v. d. Hofstad. Random graphs and complex networks, Volume 1. Cambridge University Press, 2016.
[209] J. Jorritsma, J. Komjáthy, Distance evolutions in growing preferential attachment graphs, arXiv:2003.08856 (2020).
[210] T. F. Móri. On random trees. Studia Sci. Math. Hungar., 39(1-2):143-155, 2002. References · Zbl 1026.05095
[211] T. E. Harris, Contact interactions on a lattice, Ann. Probability 2 (1974), 969-988. · Zbl 0334.60052
[212] Chatterjee, S., Durrett, R. (2009). Contact process on random graphs with degree power law distribution have critical value zero. Ann. Probab. 37, 2332-2356. · Zbl 1205.60168
[213] Berger, N., Borgs, C., Chayes, J. T., Saberi, A. (2005). On the spread of viruses on the in-ternet. Proceedings of the Sixteenth annual ACM-SIAM symposium on discrete algorithms, 301-310. · Zbl 1297.68029
[214] Can, V. H. (2017). Metastability for the contact process on the preferential attachment graph. Internet Math., https://doi.org/10.24166/im.08.2017. · Zbl 1491.05165 · doi:10.24166/im.08.2017
[215] Jacob, E., Linker, A., Mörters, P. (2019). Metastability of the contact process on fast evolv-ing scale-free networks. Ann. Appl. Probab. 29, 2654-2699. · Zbl 1441.05207
[216] Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M. (2010). Hyperbolic geometry of complex networks, Physical Review E 82(3), 036106.
[217] Kiwi, M., Mitsche, D. (2018). Spectral Gap of Random Hyperbolic Graphs and Related Parameters, Annals of Applied Probability 28, 941-989. · Zbl 1391.60022
[218] Kiwi, M., Mitsche, D. (2019). On the second largest component of random hyperbolic graphs. SIAM Journal on Discrete Mathematics, 33(4), 2200-2217. · Zbl 1427.05211
[219] Mountford, T., Valesin, D., Yao, Q. (2013). Metastable densities for the contact process on power law random graphs. Electron. J. Probab, 18(103), 1-36. · Zbl 1281.82018
[220] Müller, T., Staps, M. The diameter of KPKVB random graphs. Preprint available at https://arxiv.org/pdf/1707.09555.pdf. · Zbl 1427.05212
[221] The Contact Process on a Graph Adapting to Infection Density John Fernley (joint work with Peter Mörters, Marcel Ortgiese)
[222] Shankar Bhamidi, Danny Nam, Oanh Nguyen, and Allan Sly. Survival and extinction of epidemics on random graphs with general degree. Annals of Probability, 49(1):244-286, 2021. · Zbl 1478.60254
[223] Frank Ball, Tom Britton, Ka Yin Leung, and David Sirl. A stochastic sir network epidemic model with preventive dropping of edges. Journal of mathematical biology, 78(6):1875-1951, 2019. · Zbl 1415.92167
[224] Emmanuel Jacob and Peter Mörters. The contact process on scale-free networks evolv-ing by vertex updating. Royal Society Open Science, 4(5):170081, 2017. References
[225] G. R. Grimmett and J. M. Marstrand., The supercritical phase of percolation is well behaved, Proc. Roy. Soc. London Ser. A, 430 (1879), 439-457, 1990. · Zbl 0711.60100
[226] S. Martineau and V. Tassion, Locality of percolation for abelian Cayley graphs, Ann. Probab. 45 (2), 1247-1277, 2017. · Zbl 1388.60165
[227] H. Duminil-Copin, G. Kozma and V. Tassion, Upper bounds on the percolation correlation length, arXiv preprint arXiv:1902.03207, 2019. · Zbl 1469.60325
[228] Marek Biskup On the scaling of the chemical distance in long-range percolation models. The Annals of Probability, 32(4):2938 -2977, 2004. · Zbl 1072.60084
[229] Karl Bringmann, Ralph Keusch and Johannes Lengler. Average Distance in a General Class of Scale-Free Networks with Underlying Geometry. arXiv, 2018. · Zbl 1442.05204
[230] Maria Deijfen, Remco van der Hofstad and Gerard Hooghiemstra. Scale-free percolation. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 49(3):817-838, 2013. · Zbl 1274.60290
[231] Steffen Dereich, Christian Mönch and Peter Mörters. Typical distances in ultrasmall random networks. Advances in Applied Probability, 44(2):583-601, 2012. · Zbl 1244.05199
[232] Peter Gracar, Arne Grauer, Lukas Luechtrath and Peter Mörters. The age-dependent ran-dom connection model. Queueing Syst., 93(3-4):309 -332, 2019. · Zbl 1432.60090
[233] Peter Gracar, Markus Heydenreich, Christian Mönch and Peter Mörters. Recurrence versus Transience for Weight-Dependent Random Connection Models. arXiv, 2019.
[234] Peter Gracar, Lukas Lüchtrath and Peter Mörters. Percolation phase transition in weight-dependent random connection models. arXiv, 2020. · Zbl 1475.60198
[235] Emmanuel Jacob and Peter Mörters. Spatial preferential attachment networks: power laws and clustering coefficients. Annals of Applied Probability, 25(2):632 -662, 2015. Reporter: Dominik Schmid · Zbl 1310.05185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.