×

Contact processes on random graphs with power law degree distributions have critical value 0. (English) Zbl 1205.60168

The authors consider the contact process with infection rate \(\lambda\) on a random graph with \(n\) vertices and power law degree distributions. Based on mean field calculations, physicists seem to regard as an established fact that the critical value \(\lambda _c\) of the infection rate is positive if the power \(\alpha\) is larger than three; indeed, this result has recently been generalized to bipartite graphs by J. Gómez-Gardeñes et al. [Proc. Natl. Acad. Sci. USA 105, 1399–1404 (2008)]. However, it is shown in the present paper that the critical value \(\lambda _c\) is zero for any value of \(\alpha>3\). In addition, the contact process starting from all vertices infected, with a probability tending to one as \(n\) goes to infinity, maintains a positive density of infected sites for time at least exp\((n^{1-\delta})\) for any \(\delta>0\).
Thanks to the last result and the contact process duality, the authors also establish the existence of a quasi-stationary distribution in which a randomly chosen vertex is occupied with probability \(\rho (\lambda)\). One expects that \(\rho(\lambda)\sim C\lambda^\beta \) as \(\lambda\) tends to zero. The authors show that \(\alpha-1\leq\beta\leq 2\alpha-3\), so that in particular \(\beta\) is larger than two for \(\alpha\) lager than three. As a result, even if the graph is locally tree-like, \(\beta\) does not take the mean field critical value \(\beta=1\).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
05C80 Random graphs (graph-theoretic aspects)

References:

[1] Berger, N., Borgs, C., Chayes, J. T. and Saberi, A. (2005). On the spread of viruses on the internet. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms 301-310 (electronic). ACM, New York. · Zbl 1297.68029
[2] Berger, N., Borgs, C., Chayes, J. T. and Saberi, A. (2009). Weak local limits for preferential attachment graphs. · Zbl 1296.60010
[3] Bollobás, B. (2001). Random Graphs , 2nd ed. Cambridge Studies in Advanced Mathematics 73 . Cambridge Univ. Press, Cambridge. · Zbl 0979.05003
[4] Chung, F. and Lu, L. (2002). The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99 15879-15882 (electronic). · Zbl 1064.05137 · doi:10.1073/pnas.252631999
[5] Chung, F. and Lu, L. (2003). The average distance in a random graph with given expected degrees. Internet Math. 1 91-113. · Zbl 1065.05084 · doi:10.1080/15427951.2004.10129081
[6] Cooper, C. and Frieze, A. (2003). A general model of web graphs. Random Structures Algorithms 22 311-335. · Zbl 1018.60007 · doi:10.1002/rsa.10084
[7] Durrett, R. (2007). Random Graph Dynamics . Cambridge Univ. Press, Cambridge. · Zbl 1116.05001
[8] Durrett, R. and Jung, P. (2007). Two phase transitions for the contact process on small worlds. Stochastic Process. Appl. 117 1910-1927. · Zbl 1136.60054 · doi:10.1016/j.spa.2007.03.003
[9] Durrett, R. and Liu, X. F. (1988). The contact process on a finite set. Ann. Probab. 16 1158-1173. · Zbl 0647.60105 · doi:10.1214/aop/1176991682
[10] Durrett, R. and Schonmann, R. H. (1988). The contact process on a finite set. II. Ann. Probab. 16 1570-1583. · Zbl 0664.60106 · doi:10.1214/aop/1176991584
[11] Gómez-Gardeñes, J., Latora, V., Moreno, Y. and Profumo, E. (2008). Spreading of sexually transmitted diseases in heterosexual populations. Proc. Natl. Acad. Sci. 105 1399-1404.
[12] Harris, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969-988. · Zbl 0334.60052 · doi:10.1214/aop/1176996493
[13] Janson, S., Łuczak, T. and Rucinski, A. (2000). Random Graphs . Wiley, New York.
[14] Liggett, T. M. (1999). Stochastic Interacting Systems : Contact , Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 324 . Springer, Berlin. · Zbl 0949.60006
[15] Mountford, T. S. (1993). A metastable result for the finite multidimensional contact process. Canad. Math. Bull. 36 216-226. · Zbl 0808.60082 · doi:10.4153/CMB-1993-031-3
[16] Newman, M. E. J., Strogatz, S. H. and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E. 64 026118.
[17] Newman, M. E. J., Strogatz, S. H. and Watts, D. J. (2002). Random graph models of social networks. Proc. Nat. Acad. Sci. 99 2566-2572. · Zbl 1114.91362 · doi:10.1073/pnas.012582999
[18] Pastor-Satorras, R. and Vespignani, A. (2001a). Epidemic spreading in scale-free networks. Phys. Rev. Letters 86 3200-3203.
[19] Pastor-Satorras, R. and Vespignani, A. (2001b). Epidemic dynamics and endemic states in complex networks. Phys. Rev. E. 63 066117.
[20] Pastor-Satorras, R. and Vespignani, A. (2002). Epidemic dynamics in finite size scale-free networks. Phys. Rev. E. 65 035108(R).
[21] van den Esker, H., van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005). Distances in random graphs with infinite mean degrees. Extremes 8 111-141 (2006). · Zbl 1120.05086 · doi:10.1007/s10687-006-7963-z
[22] van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2007). Distances in random graphs with finite mean and infinite variance degrees. Electron. J. Probab. 12 703-766 (electronic). · Zbl 1126.05090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.