×

Power-law bounds for increasing subsequences in Brownian separable permutons and homogeneous sets in Brownian cographons. (English) Zbl 1533.05004

Summary: The Brownian separable permutons are a one-parameter family – indexed by \(p \in(0, 1)\) – of universal limits of random constrained permutations. We show that for each \(p \in(0, 1)\), there are explicit constants \(1 / 2 < \alpha_\ast (p) \leq \beta^\ast(p) < 1\) such that the length of the longest increasing subsequence in a random permutation of size \(n\) sampled from the Brownian separable permuton is between \(n^{\alpha_\ast (p) - o (1)}\) and \(n^{\beta^\ast (p) + o (1)}\) with probability tending to 1 as \(n \to \infty\). In the symmetric case \(p = 1 / 2\), we have \(\alpha_\ast(p) \approx 0.812\) and \(\beta^\ast(p) \approx 0.975\). We present numerical simulations which suggest that the lower bound \(\alpha_\ast(p)\) is close to optimal in the whole range \(p \in(0, 1)\). Our results work equally well for the closely related Brownian cographons. In this setting, we show that for each \(p \in(0, 1)\), the size of the largest clique (resp. independent set) in a random graph on \(n\) vertices sampled from the Brownian cographon is between \(n^{\alpha_\ast (p) - o (1)}\) and \(n^{\beta^\ast (p) + o (1)}\) (resp. \(n^{\alpha_\ast (1 - p) - o (1)}\) and \(n^{\beta^\ast (1 - p) + o (1)})\) with probability tending to 1 as \(n \to \infty\).
Our proofs are based on the analysis of a fragmentation process embedded in a Brownian excursion introduced by J. Bertoin [Ann. Inst. Henri Poincaré, Probab. Stat. 38, No. 3, 319–340 (2002; Zbl 1002.60072)]. We expect that our techniques can be extended to prove similar bounds for uniform separable permutations and uniform cographs.

MSC:

05A05 Permutations, words, matrices
60J25 Continuous-time Markov processes on general state spaces
60C05 Combinatorial probability

Citations:

Zbl 1002.60072

References:

[1] Aldous, D.; Diaconis, P., Hammersley’s interacting particle process and longest increasing subsequences, Probab. Theory Relat. Fields, 103, 2, 199-213 (1995), MR1355056 · Zbl 0836.60107
[2] Aldous, D.; Pitman, J., The standard additive coalescent, Ann. Probab., 1703-1726 (1998) · Zbl 0936.60064
[3] Basu, R.; Bhatnagar, N., Limit theorems for longest monotone subsequences in random Mallows permutations, Ann. Inst. Henri Poincaré Probab. Stat., 53, 4, 1934-1951 (2017), MR3729641 · Zbl 1382.60018
[4] Bassino, F.; Bouvel, M.; Drmota, M.; Féray, V.; Gerin, L.; Maazoun, M.; Pierrot, A., Linear-sized independent sets in random cographs and increasing subsequences in separable permutations, Comb. Theory, 2, 3, 35 (2022), Id/No 15 · Zbl 1498.60040
[5] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Pierrot, A., The Brownian limit of separable permutations, Ann. Probab., 46, 4, 2134-2189 (2018), MR3813988 · Zbl 1430.60013
[6] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Maazoun, M.; Pierrot, A., Universal limits of substitution-closed permutation classes, J. Eur. Math. Soc., 22, 11, 3565-3639 (2020), MR4167015 · Zbl 1469.60039
[7] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Maazoun, M.; Pierrot, A., Random cographs: Brownian graphon limit and asymptotic degree distribution, Random Struct. Algorithms, 60, 2, 166-200 (2022) · Zbl 1526.05123
[8] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Maazoun, M.; Pierrot, A., Scaling limits of permutation classes with a finite specification: a dichotomy, Adv. Math., 405, Article 108513 pp. (2022) · Zbl 1509.60013
[9] Borga, J.; Bouvel, M.; Féray, V.; Stufler, B., A decorated tree approach to random permutations in substitution-closed classes, Electron. J. Probab., 25, Article 67 pp. (2020), MR4115736 · Zbl 1456.60030
[10] Baccelli, F.; Błaszczyszyn, B.; Karray, M., Random Measures, Point Processes, and Stochastic Geometry (2020), in preparation
[11] Borgs, C.; Chayes, J. T.; Lovász, L.; Sós, V. T.; Vesztergombi, K., Convergent sequences of dense graphs I: subgraph frequencies, metric properties and testing, Adv. Math., 219, 6, 1801-1851 (2008) · Zbl 1213.05161
[12] Bertoin, J., Lévy Processes, vol. 121 (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0861.60003
[13] Bertoin, J., Self-similar fragmentations, Ann. Inst. Henri Poincaré Probab. Stat., 38, 319-340 (2002) · Zbl 1002.60072
[14] Bertoin, J., Random Fragmentation and Coagulation Processes, vol. 102 (2006), Cambridge University Press · Zbl 1107.60002
[15] Borga, J.; Gwynne, E.; Sun, X., Permutons, meanders, and SLE-decorated Liouville quantum gravity (July 2022), ArXiv e-prints
[16] Borga, J.; Maazoun, M., Scaling and local limits of Baxter permutations and bipolar orientations through coalescent-walk processes, Ann. Probab., 50, 4, 1359-1417 (2022), MR4420422 · Zbl 1504.60163
[17] Bucić, M.; Nguyen, T.; Scott, A.; Seymour, P., A loglog step towards Erdös-Hajnal (2023), ArXiv e-prints
[18] Borga, J., Random permutations – a geometric point of view (July 2021), ArXiv e-prints, (PhD thesis)
[19] Borga, J., The permuton limit of strong-Baxter and semi-Baxter permutations is the skew Brownian permuton, Electron. J. Probab., 27, 53 (2022), Id/No 158 · Zbl 1515.60038
[20] Borga, J., The skew Brownian permuton: a new universality class for random constrained permutations, Proc. Lond. Math. Soc. (3), 126, 6, 1842-1883 (2023) · Zbl 1539.60006
[21] Bhatnagar, N.; Peled, R., Lengths of monotone subsequences in a Mallows permutation, Probab. Theory Relat. Fields, 161, 3-4, 719-780 (2015), MR3334280 · Zbl 1323.60019
[22] Bertoin, J.; Van Harn, K.; Steutel, F. W., Renewal theory and level passage by subordinators, Stat. Probab. Lett., 45, 1, 65-69 (1999) · Zbl 0965.60053
[23] Campos, M.; Griffiths, S.; Morris, R.; Sahasrabudhe, J., An exponential improvement for diagonal Ramsey (2023), ArXiv e-prints
[24] Chudnovsky, M., The Erdös-Hajnal conjecture—a survey, J. Graph Theory, 75, 2, 178-190 (2014) · Zbl 1280.05086
[25] Curien, N.; Marzouk, C., How fast planar maps get swallowed by a peeling process, Electron. Commun. Probab., 23, 11 (2018), Id/No 18 · Zbl 1390.05214
[26] Deutsch, E.; Hildebrand, A. J.; Wilf, H. S., Longest increasing subsequences in pattern-restricted permutations, Permutation Patterns. Permutation Patterns, Otago, 2003. Permutation Patterns. Permutation Patterns, Otago, 2003, Electron. J. Comb., 9, 2, Article 12 pp. (2002), MR2028291 · Zbl 1011.05008
[27] Dubach, V., Locally uniform random permutations with large increasing subsequences (January 2023), ArXiv e-prints · Zbl 1541.60009
[28] Dauvergne, D.; Virág, B., The scaling limit of the longest increasing subsequence (April 2021), ArXiv e-prints
[29] Deuschel, J.-D.; Zeitouni, O., Limiting curves for iid records, Ann. Probab., 852-878 (1995) · Zbl 0834.60058
[30] Deuschel, J.-D.; Zeitouni, O., On increasing subsequences of i.i.d. samples, Comb. Probab. Comput., 8, 3, 247-263 (1999) · Zbl 0949.60019
[31] Erdős, P.; Hajnal, A., On spanned subgraphs of graphs, (Graphentheorie und Ihre Anwendungen. Graphentheorie und Ihre Anwendungen, Oberhof, 1977 (1977)) · Zbl 0405.05031
[32] Erdős, P.; Hajnal, A., Ramsey-type theorems, Discrete Appl. Math., 25, 1-2, 37-52 (1989) · Zbl 0715.05052
[33] Gwynne, E.; Holden, N.; Sun, X., A mating-of-trees approach for graph distances in random planar maps, Probab. Theory Relat. Fields, 177, 3-4, 1043-1102 (2020), MR4126936 · Zbl 1464.60011
[34] Grübel, R., Ranks, copulas, and permutons (Jun 2022), ArXiv e-prints
[35] Hammersley, J. M., A few seedlings of research, (Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California, Berkeley, Calif., 1970/1971. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California, Berkeley, Calif., 1970/1971, Theory of Statistics, vol. I (1972)), 345-394, MR0405665
[36] Kammoun, M. S., Monotonous subsequences and the descent process of invariant random permutations, Electron. J. Probab., 23:Paper no. 118, 31 (2018), MR3885551 · Zbl 1406.60018
[37] Kang, R. J.; McDiarmid, C.; Reed, B.; Scott, A., For most graphs H, most H-free graphs have a linear homogeneous set, Random Struct. Algorithms, 45, 3, 343-361 (2014) · Zbl 1302.05116
[38] Komlós, J.; Major, P.; Tusnády, G., An approximation of partial sums of independent RV’-s, and the sample DF. I, Z. Wahrscheinlichkeitstheor. Verw. Geb., 32, 111-131 (1975) · Zbl 0308.60029
[39] Kyprianou, A. E.; Rivero, V.; Şengül, B., Conditioning subordinators embedded in Markov processes, Stoch. Process. Appl., 127, 4, 1234-1254 (2017) · Zbl 1373.60085
[40] Kyprianou, A. E., Fluctuations of Lévy Processes with Applications: Introductory Lectures (2014), Springer Science & Business Media · Zbl 1384.60003
[41] Lenoir, T., Graph classes with few \(P_4\)’s: universality and Brownian graphon limits (2023), ArXiv e-prints
[42] Lovász, L., Large Networks and Graph Limits, vol. 60 (2012), American Mathematical Soc. · Zbl 1292.05001
[43] Loebl, M.; Reed, B.; Scott, A.; Thomason, A.; Thomassé, S., Almost all H-free graphs have the Erdös-Hajnal property, (An Irregular Mind: Szemerédi is 70 (2010)), 405-414 · Zbl 1219.05124
[44] Logan, B. F.; Shepp, L. A., A variational problem for random Young tableaux, Adv. Math., 26, 2, 206-222 (1977), MR1417317 · Zbl 0363.62068
[45] Maazoun, M., On the Brownian separable permuton, Comb. Probab. Comput., 29, 2, 241-266 (2020), MR4079636 · Zbl 1478.60027
[46] McKinley, G., Superlogarithmic cliques in dense inhomogeneous random graphs, SIAM J. Discrete Math., 33, 3, 1772-1800 (2019) · Zbl 1420.05162
[47] Mörters, P.; Peres, Y., Brownian Motion, vol. 30 (2010), Cambridge University Press · Zbl 1243.60002
[48] Mueller, C.; Starr, S., The length of the longest increasing subsequence of a random Mallows permutation, J. Theor. Probab., 26, 2, 514-540 (2013), MR3055815 · Zbl 1270.60014
[49] Madras, N.; Yıldırım, G., Longest monotone subsequences and rare regions of pattern-avoiding permutations, Electron. J. Comb., 24, 4, Article 4.13 pp. (2017), MR3711046 · Zbl 1372.05004
[50] Mansour, T.; Yıldırım, G., Permutations avoiding 312 and another pattern, Chebyshev polynomials and longest increasing subsequences, Adv. Appl. Math., 116, Article 102002 pp. (2020), MR4056113 · Zbl 1433.05012
[51] Romik, D., The Surprising Mathematics of Longest Increasing Subsequences, Institute of Mathematical Statistics Textbooks, vol. 4 (2015), Cambridge University Press: Cambridge University Press New York, MR3468738 · Zbl 1345.05003
[52] Revuz, D.; Yor, M., Continuous Martingales and Brownian Motion, vol. 293 (2013), Springer Science & Business Media
[53] Starr, S., Thermodynamic limit for the Mallows model on \(S_n\), J. Math. Phys., 50, 9, Article 095208 pp. (2009) · Zbl 1241.82039
[54] Stufler, B., Graphon convergence of random cographs, Random Struct. Algorithms, 59, 3, 464-491 (2021) · Zbl 1526.05127
[55] Starr, S.; Walters, M., Phase uniqueness for the Mallows measure on permutations, J. Math. Phys., 59, 6, Article 063301 pp. (2018), MR3817550 · Zbl 1459.82099
[56] Ulam, S. M., Monte Carlo calculations in problems of mathematical physics, (Modern Mathematics for the Engineer: Second Series (1961), McGraw-Hill: McGraw-Hill New York), 261-281, MR0129165
[57] Veršik, A. M.; Kerov, S. V., Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux, Dokl. Akad. Nauk SSSR, 233, 6, 1024-1027 (1977), MR0480398
[58] Zaitsev, A. Y., Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, ESAIM Probab. Stat., 2, 41-108 (1998), MR1616527 · Zbl 0897.60033
[59] Zhong, C., The length of the longest increasing subsequence of Mallows permutation models with \(L^1\) and \(L^2\) distances (2023), ArXiv e-prints
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.