×

Linear-sized independent sets in random cographs and increasing subsequences in separable permutations. (English) Zbl 1498.60040

Summary: This paper is interested in independent sets (or equivalently, cliques) in uniform random cographs. We also study their permutation analogs, namely, increasing subsequences in uniform random separable permutations.
First, we prove that, with high probability as \(n\) gets large, the largest independent set in a uniform random cograph with \(n\) vertices has size \(o(n)\). This answers a question of R. J. Kang et al. [Random Struct. Algorithms 45, No. 3, 343–361 (2014; Zbl 1302.05116)]. Using the connection between graphs and permutations via inversion graphs, we also give a similar result for the longest increasing subsequence in separable permutations. These results are proved using the self-similarity of the Brownian limits of random cographs and random separable permutations, and actually apply more generally to all families of graphs and permutations with the same limit.
Second, and unexpectedly given the above results, we show that for \(\beta >0\) sufficiently small, the expected number of independent sets of size \(\beta n\) in a uniform random cograph with \(n\) vertices grows exponentially fast with \(n\). We also prove a permutation analog of this result. This time the proofs rely on singularity analysis of the associated bivariate generating functions.

MSC:

60C05 Combinatorial probability
05C80 Random graphs (graph-theoretic aspects)
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
05A05 Permutations, words, matrices

Citations:

Zbl 1302.05116

References:

[1] D. Aldous. Recursive Self-Similarity for Random Trees, Random Triangulations and Brownian Excursion. Ann. Probab. 22(2): 527-545, 1994. · Zbl 0808.60017
[2] F. Bassino, M. Bouvel, V. Féray, L. Gerin, M. Maazoun, A. Pierrot. Universal limits of substitution-closed permutation classes, J. Eur. Math. Soc., vol. 22 (11), pp. 3565-3639, 2020. · Zbl 1469.60039
[3] F. Bassino, M. Bouvel, V. Féray, L. Gerin, M. Maazoun, A. Pierrot. Scaling limits of permutation classes with a finite specification: a dichotomy. Advances in Mathematics, 405: Article 108513, 2022. · Zbl 1509.60013
[4] F. Bassino, M. Bouvel, V. Féray, L. Gerin, A. Pierrot. The Brownian limit of sepa-rable permutations. Ann. Probab., 46 (4): 2134-2189, 2018. · Zbl 1430.60013
[5] F. Bassino, M. Bouvel, V. Féray, L. Gerin, M. Maazoun, and A. Pierrot. Ran-dom cographs: Brownian graphon limit and asymptotic degree distribution. Random Struct. Algorithms, 60 (2): 166-200, 2022. · Zbl 1526.05123
[6] B. Bhattacharya and S. Mukherjee. Degree sequence of random permutation graphs. Ann. Appl. Probab., 27(1): 439-484, 2017. · Zbl 1360.05150
[7] J. Borga, M. Bouvel, V. Féray and B. Stufler. A decorated tree approach to random permutations in substitution-closed classes. Electron. J. Probab., 25 (67): 1-52, 2020. · Zbl 1456.60030
[8] P. Bose, J. Buss and A. Lubiw. Pattern matching for permutations. Inf. Process. Lett., 65: 277-283, 1998. · Zbl 1338.68304
[9] A. Bretscher, D. Corneil, M. Habib, C. Paul. A simple linear time LexBFS cograph recognition algorithm. SIAM J. Discrete Math., 22(4): 1277-1296, 2008. · Zbl 1187.05070
[10] M. Chudnovsky. The Erdös-Hajnal conjecture -a survey. J. Graph Theory, 75(2):178-190, 2014. · Zbl 1280.05086
[11] D. G. Corneil, H. Lerchs, L. S. Burlingham. Complement reducible graphs. Discrete Appl. Math., 3(3): 163-174, 1981. · Zbl 0463.05057
[12] M. Drmota. Asymptotic distributions and a multivariate Darboux method in enumer-ation problems. J. Comb. Theory Ser. A 67: 169-184, 1994. · Zbl 0801.60016
[13] M. Drmota. Random Trees. Springer, 2009.
[14] M. Drmota, L. Ramos, C. Requilé, and J. Rué. Maximal independent sets and maxi-mal matchings in series-parallel and related graph classes. Elecron. J. Comb., 27: P1.5, 2020. · Zbl 1431.05112
[15] P. Flajolet, R. Sedgewick. Analytic combinatorics. Cambridge University Press, 2009. · Zbl 1165.05001
[16] R. Glebov, A. Grzesik, T. Klimosová, D. Král’. Finitely forcible graphons and per-mutons, J. Combin. Theory Ser. B vol. 110, p.112-135, 2015. · Zbl 1302.05200
[17] J. Hladkỳ, P. Hu, and D. Piguet. Komlós’s tiling theorem via graphon covers, J. Graph Theory 90: 24-45, 2019. · Zbl 1414.05158
[18] M. Habib, C. Paul. A simple linear time algorithm for cograph recognition. Discrete Appl. Math., 145(2): 183-197, 2005. · Zbl 1055.05107
[19] J. Hladkỳ and I. Rocha. Independent sets, cliques, and colorings in graphons. Eur. J. Comb., 88: 103108, 2020. · Zbl 1442.05155
[20] C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Rath, R. M. Sampaio. Limits of permutation sequences. J. Combin. Theory Ser. B, vol. 103 (2013) n.1, p.93-113. · Zbl 1255.05174
[21] S. Kitaev. Patterns in permutations and words. Springer (2011). · Zbl 1257.68007
[22] M. Loebl, B. Reed, A. Scott, A. Thomason, S. Thomassé. Almost all H-free graphs have the Erdős-Hajnal property. In An Irregular Mind, Szemerédi Is 70, Bolyai Soc. Math. Stud., 21: 405-414, 2010. · Zbl 1219.05124
[23] R. Kang, C. McDiarmid, B. Reed, and A. Scott. For most graphs H, most H-free graphs have a linear homogeneous set. Random Struct. Algorithms, 45(3):343-361, 2014. · Zbl 1302.05116
[24] L. Lovász. Large networks and graph limits. Volume 60 of American Mathematical Society Colloquium Publications, 2012. · Zbl 1292.05001
[25] M. Maazoun, On the Brownian separable permuton. Comb. Probab. Comput., 29(2):241-266, 2020. · Zbl 1478.60027
[26] T. Mansour, R. Rastegar, A. Roitershtein, G. Yıldırım. The longest increasing sub-sequence in involutions avoiding 3412 and another pattern. Preprint arXiv:2001:10030, 2020.
[27] G. Peyré, M. Cuturi. Computational Optimal Transport. Foundations and Trends in Ma-chine Learning: 11 (5-6), 355-607, 2019.
[28] D. Romik. The Surprising Mathematics of Longest Increasing Subsequences. Cam-bridge University Press (2015). · Zbl 1345.05003
[29] S. Sah. Diagonal Ramsey via effective quasirandomness. Preprint arXiv:2005.0925, 2020. · Zbl 1512.05389
[30] S. Seinsche. On a property of the class of n-colorable graphs. J. Comb. Theory Ser. B, 16(2): 191-193, 1974. · Zbl 0269.05103
[31] J. Spencer. Ramsey’s theorem -a new lower bound. J. Comb. Theory Ser. A, 18: 108-115, 1975. · Zbl 0296.05003
[32] B. Stufler. Graphon convergence of random cographs. Random Struct. Algorithms, 59: 464-491, 2021. · Zbl 1526.05127
[33] V. Vatter. Permutation classes. In M. Bóna, editor, Handbook of Enumerative Combi-natorics, Discrete Mathematics and its Applications. CRC Press, 2016. · Zbl 1348.05014
[34] C. Villani. Optimal transport: old and new. Springer (2008). · Zbl 1158.53036
[35] A. Würfl. Spanning subgraphs of growing degree; A generalised version of the blow-up lemma and its applications. PhD thesis, Technical University of Munich. Available at https://mediatum.ub.tum.de/doc/1126106/1126106.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.