×

The Serre spectral sequence of a multiplicative fibration. (English) Zbl 0978.55012

In this well written paper the authors analyze systematically the homology Serre spectral sequence of the loop space fibration \(\Omega F\to \Omega X\to \Omega B\) obtained by looping a fibration of simply connected pointed spaces \(F\), \(X\) and \(B\) of finite type. They show that in the presence of certain finiteness conditions on the fiber \(F\) the homology Serre spectral sequence over a prime field of positive characteristic \(p\) collapses at some finite stage and so the space \(\Omega X\) is closely related to the product space \(\Omega F\times \Omega B\). The homology Serre spectral sequence of the loop space fibration was first studied in detail by W. Browder [ibid. 107, 153-176 (1963; Zbl 0114.39304)], who showed for example, that one gets in fact a spectral sequence of cocommutative Hopf algebras. Another systematic, but different approach to investigate multiplicative fibrations and the mod \(p\) homology groups of spaces in loop space fibrations using the Eilenberg-Moore spectral sequence was undertaken by J. C. Moore and L. Smith in their fundamental papers [Am. J. Math. 90, 752-780 (1968; Zbl 0194.24501); 1113-1150 (1968; Zbl 0214.50201)].
In the paper under review the authors follow a different approach, which allows them to analyze fairly general fibrations without loosing the Hopf algebra structure in the terms of the Serre spectral sequence. Namely, under the assumption that the Hopf centre of the Hopf algebra \(H_*(\Omega X;\mathbb{F}_p)\), the union of all its central sub Hopf algebras, is a finitely generated algebra, they show that the Serre spectral sequence collapses and gives an isomorphism of graded vector spaces \[ H_*(\Omega X; \mathbb{F}_p)\otimes A\cong H_*(\Omega F;\mathbb{F}_p)\otimes H_*(\Omega B;\mathbb{F}_p) \otimes \Lambda V \] where \(A\) is a tensor product of finitely many monogenic Hopf algebras and \(\Lambda V\) is an exterior algebra on a finite dimensional vector space concentrated in odd degrees. This follows by analyzing carefully the Hopf algebra structure through all the stages of the spectral sequence, which constitutes the main technical part (§6 and §7) of the paper. Instead of using Browder’s biprimitive spectral sequence, they show that each term \(E^r\) of the Serre spectral sequence can be written as Hopf algebra in the form \(E^r_{*, 0}\otimes\Lambda U^r\otimes E^r_{0,*}\), where \(\Lambda U^r\) is the exterior Hopf algebra on the vector space \(U^r\) of primitive elements. This gives also a refinement of Browder’s classical result and allows to study the differentials \(d^r\) directly through the Hopf algebra structure of the spectral sequence.
A lot of examples and applications (§5) are given. The authors show for example, that the Serre spectral sequence of a loop fibration of a principal fibration with fiber \(K(\Gamma,n)\) collapses at some finite stage, if \(H_*(B)\) is finite dimensional. Another application is given for elliptic spaces, i.e. spaces such that for each prime \(q\) their loop space homology \(H_*(\Omega Y; \mathbb{F}_q)\) grows polynomially. This important class of spaces was introduced by the authors in [Bull. Am. Math. Soc., New Ser. 25, No. 1, 69-73 (1991; Zbl 0726.55006)]. In the paper under review they verify now that, if \(F,X\) and \(B\) are simply connected spaces of finite type, then it follows that \(X\) is elliptic if and only if \(F\) and \(B\) are elliptic.

MSC:

55R20 Spectral sequences and homology of fiber spaces in algebraic topology
57T25 Homology and cohomology of \(H\)-spaces
57T05 Hopf algebras (aspects of homology and homotopy of topological groups)
55T10 Serre spectral sequences
55R10 Fiber bundles in algebraic topology
55R05 Fiber spaces in algebraic topology
Full Text: DOI

References:

[1] David J. Anick, Hopf algebras up to homotopy, J. Amer. Math. Soc. 2 (1989), no. 3, 417 – 453. · Zbl 0681.55006
[2] Shôrô Araki, Steenrod reduced powers in the spectral sequences associated with a fibering. I, II, Mem. Fac. Sci. Kyusyu Univ. Ser. A. Math. 11 (1957), 15 – 64, 81 – 97. · Zbl 0094.35604
[3] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math., 57 (1953), 115-207. · Zbl 0052.40001
[4] Armand Borel, Topics in the homology theory of fibre bundles, Lectures given at the University of Chicago, vol. 1954, Springer-Verlag, Berlin-New York, 1967. · Zbl 0158.20503
[5] R. Bott, H. Samelson, On the Pontrjagin product in spaces of paths, Comm. Math. Helv., 27 (1953), 320-337. · Zbl 0052.19301
[6] William Browder, On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153 – 176. · Zbl 0114.39304
[7] Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1 – 38. · Zbl 0508.55004
[8] Yves Félix, Stephen Halperin, Jean-Michel Lemaire, and Jean-Claude Thomas, Mod \? loop space homology, Invent. Math. 95 (1989), no. 2, 247 – 262. · Zbl 0667.55007 · doi:10.1007/BF01393897
[9] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Hopf algebras of polynomial growth, J. Algebra 125 (1989), no. 2, 408 – 417. · Zbl 0676.16008 · doi:10.1016/0021-8693(89)90173-7
[10] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Elliptic Hopf algebras, J. London Math. Soc. (2) 43 (1991), no. 3, 545 – 555. · Zbl 0755.57018 · doi:10.1112/jlms/s2-43.3.545
[11] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Elliptic spaces, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 1, 69 – 73. · Zbl 0726.55006
[12] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Adams’ cobar equivalence, Trans. Amer. Math. Soc. 329 (1992), no. 2, 531 – 549. · Zbl 0765.55005
[13] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Torsion in loop space homology, J. Reine Angew. Math. 432 (1992), 77 – 92. · Zbl 1042.55005 · doi:10.1016/S0040-9383(03)00048-X
[14] Y. Félix, S. Halperin, and J.-C. Thomas, The category of a map and the grade of a module, Israel J. Math. 78 (1992), no. 2-3, 177 – 196. · Zbl 0773.55003 · doi:10.1007/BF02808056
[15] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Elliptic spaces. II, Enseign. Math. (2) 39 (1993), no. 1-2, 25 – 32. · Zbl 0786.55006
[16] Yves Félix and Jean-Claude Thomas, Module d’holonomie d’une fibration, Bull. Soc. Math. France 113 (1985), no. 3, 255 – 258 (French, with English summary). · Zbl 0587.55007
[17] T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295 – 322. · Zbl 0142.40702 · doi:10.1007/BF02566956
[18] Paul Goerss, Jean Lannes, and Fabien Morel, Vecteurs de Witt non commutatifs et représentabilité de l’homologie modulo \?, Invent. Math. 108 (1992), no. 1, 163 – 227 (French). · Zbl 0769.55011 · doi:10.1007/BF02100603
[19] Stephen Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199 – 224. · Zbl 0387.55010
[20] Stephen Halperin, Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83 (1992), no. 3, 237 – 282. · Zbl 0769.57025 · doi:10.1016/0022-4049(92)90046-I
[21] Jean Lannes and Lionel Schwartz, À propos de conjectures de Serre et Sullivan, Invent. Math. 83 (1986), no. 3, 593 – 603 (French, with English summary). · Zbl 0563.55011 · doi:10.1007/BF01394425
[22] James P. Lin, Torsion in \?-spaces. I, Ann. of Math. (2) 103 (1976), no. 3, 457 – 487. · Zbl 0308.55008 · doi:10.2307/1970948
[23] John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. · Zbl 0577.55001
[24] John McCleary, Homotopy theory and closed geodesics, Homotopy theory and related topics (Kinosaki, 1988) Lecture Notes in Math., vol. 1418, Springer, Berlin, 1990, pp. 86 – 94. · Zbl 0694.55010 · doi:10.1007/BFb0083695
[25] C. A. McGibbon and C. W. Wilkerson, Loop spaces of finite complexes at large primes, Proc. Amer. Math. Soc. 96 (1986), no. 4, 698 – 702. · Zbl 0594.55006
[26] J. Milnor, Construction of universal bundles, I, Annals of Math., 63 (1958), 272-284. · Zbl 0071.17302
[27] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211 – 264. · Zbl 0163.28202 · doi:10.2307/1970615
[28] Mamoru Mimura and Hirosi Toda, Topology of Lie groups. I, II, Translations of Mathematical Monographs, vol. 91, American Mathematical Society, Providence, RI, 1991. Translated from the 1978 Japanese edition by the authors. · Zbl 0757.57001
[29] John C. Moore and Larry Smith, Hopf algebras and multiplicative fibrations. I, Amer. J. Math. 90 (1968), 752 – 780. · Zbl 0194.24501 · doi:10.2307/2373482
[30] John C. Moore and Larry Smith, Hopf algebras and multiplicative fibrations. II, Amer. J. Math. 90 (1968), 1113 – 1150. · Zbl 0214.50201 · doi:10.2307/2373293
[31] J.P. Serre, Homologie singulière des espaces fibrés. Applications, Annals of Math., 54 (1951), 425-505. · Zbl 0045.26003
[32] J.P. Serre, Cohomologie modulo \(2\) des complexes d’Eilenberg-MacLane, Comm. Math. Helv., 27 (1953), 198-232. · Zbl 0052.19501
[33] William M. Singer, Extension theory for connected Hopf algebras, J. Algebra 21 (1972), 1 – 16. · Zbl 0269.16011 · doi:10.1016/0021-8693(72)90031-2
[34] Larry Smith, The cohomology of stable two stage Postnikov systems, Illinois J. Math. 11 (1967), 310 – 329. · Zbl 0171.21803
[35] R. Vázquez Garcia, Note on Steenrod squares in the spectral sequence of a fibre space, Bol. Soc. Math Mexicana, 2 (1957), 1-8.
[36] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. · Zbl 0406.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.