×

Uniform and \(L^q\)-ensemble reachability of parameter-dependent linear systems. (English) Zbl 1461.93028

Summary: In this paper, we consider families of linear systems (linear ensembles) defined by matrix pairs \(\bigl(A(\theta), B(\theta)\bigr)\) depending on a parameter \(\theta \in \mathbf{P}\) that is varying over a compact subset \(\mathbf{P}\) of the complex plane. In particular, we investigate the existence of open-loop controls which are independent of the parameter \(\theta \in \mathbf{P}\) and steer a given family of initial states \(x_0 (\theta)\) arbitrarily close to a desired family of terminal states \(f(\theta)\) in finite time. Here, the maps \(\theta \mapsto x_0 (\theta)\) and \(\theta \mapsto f(\theta)\) are assumed to lie in a common appropriately chosen Banach space \(X_n (\mathbf{P})\) of \(\mathbb{C}^n\)-valued functions. If this task is solvable for all initial and terminal states, the pair \((A(\theta), B(\theta))\) is called (completely) ensemble controllable with respect to \(X_n(\mathbf{P})\).
Using a well-known infinite-dimensional version of the Kalman rank condition for systems on Banach spaces, we derive sufficient conditions for cascade and parallel connections of linear ensembles. Moreover, we prove an abstract decomposition theorem which results from a spectral splitting of the matrix family \(A(\theta)\). Based on these findings as well as on cyclicity conditions for multiplication operators and approximation theory, we obtain necessary and sufficient conditions for ensemble controllability (reachability) with respect to the space of continuous functions and the space of \(L^q\)-functions. In the last section, results on averaged controllability (reachability) for linear families \((A(\theta), B(\theta), C(\theta))\) are presented.

MSC:

93B03 Attainable sets, reachability
93B05 Controllability
93C05 Linear systems in control theory

References:

[1] Agrachev, A.; Baryshnikov, Y.; Sarychev, A., Ensemble controllability by Lie algebraic methods, ESAIM Control Optim. Calc. Var., 22, 921-938 (2016) · Zbl 1350.93014
[2] Amato, F., Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters (2006), Springer: Springer Berlin Heidelberg · Zbl 1142.93001
[3] Andrievskii, V. V., Polynomial approximation of analytic functions on a finite number of continua in the complex plane, J. Approx. Theory, 133, 238-244 (2005) · Zbl 1085.30034
[4] Augier, N.; Boscain, U.; Sigalotti, M., Adiabatic ensemble control of a continuum of quantum systems, SIAM J. Control Optim., 56, 6, 4045-4068 (2018) · Zbl 1401.81055
[5] Baumgärtel, H., Analytic Perturbation Theory for Matrices and Operators (1985), Birkhäuser: Birkhäuser Basel · Zbl 0591.47013
[6] Beauchard, K.; Coron, J. M.; Rouchon, P., Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations, Commun. Math. Phys., 296, 525-557 (2010) · Zbl 1193.93073
[7] Bram, J., Subnormal operators, Duke Math. J., 22, 75-94 (1955) · Zbl 0064.11603
[8] Bredon, G. E., Topology and Geometry (1993), Springer: Springer New York · Zbl 0791.55001
[9] Bressan, A.; Piccoli, B., Introduction to the Mathematical Theory of Control (2007), American Institute of Mathematical Sciences (AIMS): American Institute of Mathematical Sciences (AIMS) Springfield · Zbl 1127.93002
[10] Brockett, R., Notes on the control of the Liouville equation, (Alabau-Boussouira, F.; Brockett, R.; Glass, O.; LeRousseau, J.; Zuazua, E., Control of Partial Differential Equations. Control of Partial Differential Equations, Lecture Notes in Mathematics, vol. 2048 (2012), Springer: Springer Heidelberg), 101-129
[11] Brockett, R. W., On the control of a flock by a leader, Proc. Steklov Inst. Math., 268, 49-57 (2010) · Zbl 1206.93016
[12] Chen, Y.; Georgiou, T. T.; Pavon, M., Optimal transport over a linear dynamical system, IEEE Trans. Autom. Control, 62, 2137-2152 (2017) · Zbl 1366.49056
[13] Chittaro, F. C.; Gauthier, J. P., Asymptotic ensemble stabilizability of the Bloch equation, Syst. Control Lett., 113, 36-44 (2018) · Zbl 1386.93253
[14] Curtain, R. F., Stabilizability and controllability of spatially invariant P.D.E. systems, IEEE Trans. Autom. Control, 60, 383-392 (2015) · Zbl 1360.93177
[15] Curtain, R. F.; Zwart, H., An Introduction to Infinite-Dimensional Linear Systems Theory (1995), Springer: Springer New York · Zbl 0839.93001
[16] Doležal, V., The existence of a continuous basis of a certain linear subspace of \(E_r\) which depends on a parameter, Čas. Pěst. Mat., 89, 466-469 (1964) · Zbl 0187.37103
[17] Fleig, A.; Grüne, L., Estimates on the minimal stabilizing horizon length in model predictive control for the Fokker-Planck equation, IFAC-PapersOnLine, 49, 260-265 (2016)
[18] Fuhrmann, P. A., On weak and strong reachability and controllability of infinite-dimensional linear systems, J. Optim. Theory Appl., 9, 77-89 (1972) · Zbl 0215.30203
[19] Fuhrmann, P. A., Linear Systems and Operators in Hilbert Space (1981), McGraw-Hill Inc.: McGraw-Hill Inc. New York · Zbl 0456.47001
[20] Fuhrmann, P. A.; Helmke, U., The Mathematics of Networks of Linear Systems (2015), Springer International Publishing: Springer International Publishing Switzerland · Zbl 1352.93003
[21] Ghosh, B. K.; Wang, X. A., Sufficient conditions for generic simultaneous pole assignment and stabilization of linear mimo dynamical systems, IEEE Trans. Autom. Control, 45, 734-738 (2000) · Zbl 0976.93032
[22] Grasse, K. A., A vector-bundle version of a theorem of V. Doležal, Linear Algebra Appl., 392, 45-59 (2004) · Zbl 1065.15030
[23] Hautus, M.; Sontag, E. D., New results on pole-shifting for parametrized families of systems, J. Pure Appl. Algebra, 40, 229-244 (1986) · Zbl 0665.93018
[24] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces (1978), Academic Press, Inc. · Zbl 0451.53038
[25] Helmke, U.; Schönlein, M., Uniform ensemble controllability for one-parameter families of time-invariant linear systems, Syst. Control Lett., 71, 69-77 (2014) · Zbl 1296.93025
[26] Herrero, D. A.; McDonald, J., On multicyclic operators and the Vasjunin-Nikol’skiĭ discotheca, Integral Equ. Oper. Theory, 6, 206-223 (1983) · Zbl 0505.47002
[27] Herrero, D. A.; Rodman, L., The multicyclic n-tuples of an n-multicyclic operator, and analytic structures on its spectrum, Indiana Univ. Math. J., 34, 619-629 (1985) · Zbl 0574.47003
[28] Holderrieth, A., Matrix multiplication operators generating one parameter semigroups, Semigroup Forum, 42, 155-166 (1991) · Zbl 0744.47033
[29] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1991), Cambridge University Press · Zbl 0729.15001
[30] Jorgensen, P.; Tian, F., Non-commutative Analysis (2017), World Scientific: World Scientific New Jersey · Zbl 1371.46003
[31] Jacob, B.; Partington, J. R., On controllability of diagonal systems with one-dimensional input space, Syst. Control Lett., 55, 321-328 (2006) · Zbl 1129.93323
[32] Kailath, T., Linear Systems (1980), Prentice-Hall, Inc., Englewood Cliffs Publ.: Prentice-Hall, Inc., Englewood Cliffs Publ. N.J. · Zbl 0458.93025
[33] Kato, T., Perturbation Theory for Linear Operators (1995), Springer: Springer Berlin · Zbl 0836.47009
[34] Lang, S., Real and Functional Analysis (1993), Springer: Springer New York · Zbl 0831.46001
[35] Li, J. S., Ensemble control of finite-dimensional time-varying linear systems, IEEE Trans. Autom. Control, 56, 345-357 (2011) · Zbl 1368.93035
[36] Li, J. S.; Khaneja, N., Ensemble control of Bloch equations, IEEE Trans. Autom. Control, 54, 528-536 (2009) · Zbl 1367.93072
[37] Li, J. S.; Qi, J., Ensemble control of time-invariant linear systems with linear parameter variation, IEEE Trans. Autom. Control, 61, 2808-2820 (2016) · Zbl 1359.93054
[38] Lohéac, J.; Zuazua, E., From averaged to simultaneous controllability of parameter dependent finite-dimensional systems, Ann. Fac. Sci. Toulouse Math., 6, 25, 785-828 (2016) · Zbl 1348.93052
[39] Lohéac, J.; Zuazua, E., Averaged controllability of parameter dependent conservative semigroups, J. Differ. Equ., 262, 1540-1574 (2017) · Zbl 1352.93025
[40] Muñoz, G. A.; Sarantopoulos, Y.; Tonge, A., Complexifications of real Banach spaces, polynomials and multilinear maps, Stud. Math., 134, 1-33 (1999) · Zbl 0945.46010
[41] Newman, M. H., Elements of the Topology of the Plane Sets of Points (1954), Cambridge University Press
[42] Nikolskii, N. K.; Vasjunin, V. I., Control subspaces of minimal dimension, and spectral multiplicities, (Apostol, C.; Douglas, R. G.; Sz.-Nagy, B.; Voiculescu, D.; Arsene, Gr., Invariant Subspaces and Other Topics (1982), Birkhäuser: Birkhäuser Basel), 163-179 · Zbl 0513.47001
[43] Remmert, R., Classical Topics in Complex Function Theory (2013), Springer: Springer New York
[44] Roe, J., Winding Around: The Winding Number in Topology, Geometry, and Analysis (2015), American Mathematical Society: American Mathematical Society Providence, R.I. · Zbl 1330.55001
[45] Ross, W. T.; Wogen, W. R., Common cyclic vectors for unitary operators, J. Oper. Theory, 62, 1, 65-81 (2009) · Zbl 1199.47043
[46] Rudin, W., Real and Complex Analysis (1987), McGraw-Hill Book Co.: McGraw-Hill Book Co. New York · Zbl 0925.00005
[47] Scherlein, B.; Schönlein, M.; Helmke, U., Open-loop control of parameter-dependent discrete-time systems, PAMM, 14, 939-940 (2014)
[48] Schönlein, M.; Helmke, U., Controllability of ensembles of linear dynamical systems, Math. Comput. Simul., 125, 3-14 (2016) · Zbl 1540.93010
[49] Seid, H., Cyclic multiplication operators on \(L_p\)-spaces, Pac. J. Math., 51, 549-562 (1974) · Zbl 0298.46034
[50] Sontag, E. D., Mathematical Control Theory. Deterministic Finite Dimensional Systems (1998), Springer: Springer New York · Zbl 0945.93001
[51] Sontag, E. D.; Wang, Y., Pole shifting for families of linear systems depending on at most three parameters, Linear Algebra Appl., 137-138, 3-38 (1990) · Zbl 0715.93016
[52] Tannenbaum, A., Invariance and System Theory: Algebraic and Geometric Aspects, Lecture Notes in Mathematics, vol. 845 (1981), Springer: Springer Berlin-Heidelberg-New York · Zbl 0456.93001
[53] Trentelman, H. L.; Stoorvogel, A. A.; Hautus, M., Control Theory for Linear Systems (2001), Springer: Springer London · Zbl 0963.93004
[54] Triggiani, R., Controllability and observability in Banach space with bounded operators, SIAM J. Control, 13, 462-491 (1975) · Zbl 0268.93007
[55] Warner, F. W., Foundations of Differentiable Manifolds and Lie Groups (1983), Springer: Springer Berlin · Zbl 0516.58001
[56] Zeng, S.; Allgöwer, F., A moment-based approach to ensemble controllability of linear systems, Syst. Control Lett., 98, 49-56 (2016) · Zbl 1351.93023
[57] Zeng, S.; Ishii, H.; Allgöwer, F., Sampled observability and state estimation of discrete ensembles, IEEE Trans. Autom. Control, 62, 2406-2418 (2017) · Zbl 1366.93687
[58] Zeng, S.; Waldherr, S.; Ebenbauer, C.; Allgöwer, F., Ensemble observability of linear systems, IEEE Trans. Autom. Control, 61, 1452-1465 (2016) · Zbl 1359.93473
[59] Zhu, K., An Introduction to Operator Algebras (1993), CRC Press: CRC Press Boca Raton, FL
[60] Zuazua, E., Averaged control, Automatica J. IFAC, 50, 3077-3087 (2014) · Zbl 1309.93029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.