×

Jordan properties of automorphism groups of certain open algebraic varieties. (English) Zbl 1433.14008

A group \(G\) is called Jordan if there exists a positive integer \(J\) such that every finite subgroup \(B\) of \(G\) contains an normal abelian subgroup \(A\) of \(B\) of index \([B:A]\leq J\). The group \(G\) is strongly Jordan if it is Jordan and its finite abelian subgroups are generated by at most \(a=a(G)\) elements. In a paper under review the authors study the group \(\text{Aut}(W)\) of (biregular) automorphisms of an irreducible algebraic variety \(W\) over an algebraically closed field \(k\) of characteristic zero. The main result is the following. Let \(W\) be an irreducible quasiprojective variety that is birational to a product \(A\times{\mathbb P}^1\), where \(A\) is a smooth projective variety which does not contain rational curves. Then \(\text{Aut}(W)\) is strongly Jordan. As a corollary the authors obtain that if \(W\) is a quasiprojective irreducible variety of dimension \(d\leq 3\) which is not birational to \(E\times{\mathbb P}^2\), where \(E\) is an elliptic curve, then \(\text{Aut}(W)\) is Jordan.

MSC:

14E07 Birational automorphisms, Cremona group and generalizations
14H52 Elliptic curves
20B27 Infinite automorphism groups

References:

[1] W. Barth, K. Hulek, C. Peters, A. van de Ven, Compact Complex Surfaces, Springer-Verlag, Berlin, 2004. · Zbl 1036.14016 · doi:10.1007/978-3-642-57739-0
[2] T. Bandman, Yu. G. Zarhin, Jordan groups and algebraic surfaces, Transform. Groups 20 (2015), no. 2, 327-334. · Zbl 1375.14142 · doi:10.1007/s00031-014-9293-6
[3] T. Bandman, Yu. G. Zarhin, Jordan groups, conic bundles and abelian varieties, Algebraic Geometry 4 (2017), no. 2, 229-246. · Zbl 1388.14047 · doi:10.14231/AG-2017-012
[4] C. Birkar, Singularities of linear systems and boundedness of Fano varieties, arXiv:1609.05543 (2016). · Zbl 1469.14085
[5] Bombieri, E.; Mumford, D.; Baily, WL (ed.); Shioda, T. (ed.), Enriques’ classification of surfaces in char. p, II, 23-43 (1977), Cambridge · Zbl 0348.14021 · doi:10.1017/CBO9780511569197.004
[6] B. Conrad, A modern proof of Chevalley’ s theorem on algebraic groups, J. Ramunajam Math. Soc. 17 (2002), no. 1, 1-18. · Zbl 1007.14005
[7] F. Cossec, I. Dolgachev, Enriques Surfaces I, Progress in Mathematics, Vol. 76, Birkhäuser, Berlin, 1989. · Zbl 0665.14017
[8] C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York, 1962. · Zbl 0131.25601
[9] O. Debarre, Higher-Dimensional Algebraic Geometry, Springer-Verlag, New York, 2001. · Zbl 0978.14001 · doi:10.1007/978-1-4757-5406-3
[10] A. Grothendieck, Technique de construction et théorḿes d’existence en géométrie algébrique IV: les schémas de Hilbert, Séminaire N. Bourbaki, 1960-1961, exp. 221, 249-276.
[11] A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de J. Dieudonné) : IV, Étude locale des schémas et des morphismes de schémas, Troisiéme partie, Publ. Math. IHES 28 (1966), 5-255. · Zbl 0144.19904
[12] Sh. Iitaka, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 76, Springer-Verlag, Berlin, 1982. · Zbl 0491.14006
[13] T. Kambayashi, D. Wright, Flat families of affine lines are affine-line bundles, Illinois J. Math. 29 (1985), no. 4, 672-681. · Zbl 0599.14010 · doi:10.1215/ijm/1256045502
[14] J. Kollar, Rational Curves on Algebraic Varieties, Ergebnisse der Math. 3 Folge, Vol. 32, Springer-Verlag, Berlin, 1996. · Zbl 0877.14012
[15] S. Lang, Algebra, 2nd edition, Addison-Wesley, Reading, MA, 1993. · Zbl 0848.13001
[16] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, Vol. 6, Oxford Univ. Press, New York, 2002. · Zbl 0996.14005
[17] T. Matsusaka, Polarized varieries, fields of moduli and generalized Kummer varieties of polarized varieties, American J. Math. 80, no. 1, 45-82. · Zbl 0085.15304
[18] D. Mumford, T. Oda, Algebraic Geometry II, Texts and Reading in Mathematics, Vol.73, Hindustan Book Agency, Mumbai, 2015. · Zbl 1325.14001
[19] Sh. Meng, D.-Q. Zhang, Jordan property for non-linear algebraic groups and projective varieties, American J. Math. 140 (2018), no. 4, 1133-1145. · Zbl 1428.14023 · doi:10.1353/ajm.2018.0026
[20] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Math. Vol. 1358, Springer-Verlag, Berlin, 1999. · Zbl 0945.14001
[21] D. Mumford, Abelian Varieties, 3rd edition, Hindustan Book Agency, India, Mumbai, 2008. · Zbl 1177.14001
[22] I. Mundet i Riera, A. Turull, Boosting an analogue of Jordan’s theorem for finite groups, Adv. Math. 272 (2015), 820-836. · Zbl 1369.20034 · doi:10.1016/j.aim.2014.12.021
[23] V. L. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, in: Affine Algebraic Geometry: the Russell Festschrift, CRM Proceedings and Lecture Notes, Vol. 54, Amer. Math. Soc., Providence, 2011, pp. 289-311 · Zbl 1242.14044
[24] V. L. Popov, Jordan groups and automorphism groups of algebraic varieties, in: Automorphisms in Birational and Affine Geometry, Springer Proceedings in Mathematics and Statistics, Vol. 79, Springer, Cham, 2014, pp. 185-213. · Zbl 1325.14024
[25] Yu. Prokhorov, C. Shramov, Jordan property for Cremona groups, Amer. J. Math. 138 (2016), no. 2, 403-418. · Zbl 1343.14010 · doi:10.1353/ajm.2016.0017
[26] Yu. Prokhorov, C. Shramov, Jordan Property for groups of birational Selfmaps, Compositio Math. 150 (2014), 2054-2072. · Zbl 1314.14022 · doi:10.1112/S0010437X14007581
[27] Yu. Prokhorov, C. Shramov, Finite groups of birational selfmaps of threefolds, arXiv:1611.00789 (2016). · Zbl 1423.14094
[28] M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil Ci. 35 (1963), 487-489. · Zbl 0123.13804
[29] F. Sakai, Kodaira dimension of complements of divisors, in: Complex Analysis and Algebraic Geometry (W.L.Baily Jr., T. Shioda, eds.), Cambridge University Press, Cambridge, 1977, pp. 239-259. · Zbl 0375.14009
[30] F. Serrano, Divisors of Bielliptic surfaces and Embedding in ℙ4, Math. Z. 203 (1990), 527-533. · Zbl 0722.14023 · doi:10.1007/BF02570754
[31] J.-P. Serre, Finite Groups: an Introduction, International Press, Somerville, MA, 2016. · Zbl 1347.20014
[32] И. Р. Шафаревич (ред.), Алгебраические поверхности, Труды мат. инст. им. В. А. Стеклова, т. LXXV, Наука, М., 1965. Engl. transl.: I. R. Shafarevich et al., Algebraic Surfaces, American Mathematical Society, Providence, RI, 1967.
[33] H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28. · Zbl 0277.14008 · doi:10.1215/kjm/1250523277
[34] H. Sumihiro, Equivariant completion, II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573-605. · Zbl 0331.14008 · doi:10.1215/kjm/1250523005
[35] Yu. G. Zarhin, Theta groups and products of abelian and rational varieties, Proc. Edinburgh Math. Soc. 57 (2014), no. 1, 299-304. · Zbl 1311.14018 · doi:10.1017/S0013091513000862
[36] Yu. G. Zarhin, Jordan groups and elliptic ruled surfaces, Transform. Groups 20 (2015), no. 2, 557-572. · Zbl 1357.14056 · doi:10.1007/s00031-014-9292-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.