×

Twistors, quartics, and del Pezzo fibrations. (English) Zbl 1517.53001

Memoirs of the American Mathematical Society 1414. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6412-7/pbk; 978-1-4704-7484-3/ebook). vii, 134 p. (2023).
In this well-written research monograph the author studies Moishezon twistor spaces on connected sums of complex projective planes.
Let us recall the notation and basic definitions before formulating the main result. Let \(M\) be a \(4\)-manifold equipped with a self-dual conformal structure and let \(Z\) be the associated twistor space. Write \(\pi : Z \rightarrow M\) for the projection. The fibers of \(\pi\) are complex submanifolds of \(Z\) and are isomorphic to \(\mathbb{P}^{1}_{\mathbb{C}}\). These lines are called the twistor lines of the twistor space \(Z\). Recall that the anti-canonical bundle \(-K_{Z}\) of \(Z\) is of degree \(4\) over a twistor line. In particular, \(\kappa(Z) = -\infty\) for the Kodaira dimension when \(Z\) is compact. In a neighborhood of a twistor line, there exists a \(4\)-th square root of \(-K_{Z}\) and it exists globally when the base \(4\)-manifold \(M\) admits a spin structure. However, even if \(M\) is not spin, from the construction of a twistor space, there always exists a global and natural square root of \(-K_{Z}\) as a holomorphic line bundle. This is called the vertical line bundle or the fundamental line bundle, and is of degree two over a twistor line. We denote it by \(F(=K_{Z}^{-1/2})\) and we call the complete linear system \(|F|\) the fundamental system. An element of the fundamental system is called a fundamental divisor. The main result is a classification and a description of Moishezon twistor spaces on \(n\mathbb{P}^{2}_{\mathbb{C}}\) with \(n\geq 4\), where \(n\mathbb{P}^{2}_{\mathbb{C}}\) denotes the connected sum of \(n\) copies of \(\mathbb{P}^{2}_{\mathbb{C}}\). It can be formulated as follows.
Theorem. Let \(n\geq 4\) and \(Z\) be a Moishezon twistor space on \(n\mathbb{P}^{2}_{\mathbb{C}}\). Suppose that \(\dim |F| = 1\) and \(Z\) is not a generalized LeBrun space. Then there exists \(m\geq 2\) such that the pluri-system \(|mF|\) includes an \((m+2)\)-dimensional sub-system whose meromorphic map \(\Phi : Z \rightarrow \mathbb{P}^{m+2}_{\mathbb{C}}\) satisfies the following properties:
(i) The image \(\Phi(Z)\) is a scroll of planes over a rational normal curve in \(\mathbb{P}^{m}_{\mathbb{C}}\);
(ii) The meromorphic map \(\Phi: Z \rightarrow \Phi(Z)\) is two-to-one and the branch divisor is a cut of the scroll by a quartic hypersurface in \(\mathbb{P}^{m+2}_{\mathbb{C}}\);
(iii) The quartic hypersurface is defined by an equation of the form \[ h_{1}h_{2}h_{3}h_{4} = Q^{2}, \] where \(h_{i}\) are linear and \(Q\) is quadratic.
Furthermore, the integer \(m\) necessarily satisfies \(m \geq n-2\).

MSC:

53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
14-02 Research exposition (monographs, survey articles) pertaining to algebraic geometry
32-02 Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces
53C28 Twistor methods in differential geometry
14D06 Fibrations, degenerations in algebraic geometry
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14H51 Special divisors on curves (gonality, Brill-Noether theory)
32L25 Twistor theory, double fibrations (complex-analytic aspects)

References:

[1] Atiyah, M. F., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, 425-461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[2] Campana, F., On twistor spaces of the class \(\mathcal{C} \), J. Differential Geom., 541-549 (1991) · Zbl 0694.32017
[3] Campana, F., The class \(\mathcal{C}\) is not stable by small deformations, Math. Ann., 19-30 (1991) · Zbl 0722.32014 · doi:10.1007/BF01459236
[4] Campana, F., A conic bundle description of Moishezon twistor spaces without effective divisors of degree one, Math. Z., 137-162 (1998) · Zbl 0919.32019 · doi:10.1007/PL00004646
[5] Campana, F., Existence of twistor spaces of algebraic dimension two over the connected sum of four complex projective planes, Proc. Amer. Math. Soc., 2633-2642 (1999) · Zbl 0938.32015 · doi:10.1090/S0002-9939-99-05406-4
[6] Fujiki, Akira, Compact self-dual manifolds with torus actions, J. Differential Geom., 229-324 (2000) · Zbl 1032.57036
[7] Griffiths, Phillip, Principles of algebraic geometry, Pure and Applied Mathematics, xii+813 pp. (1978), Wiley-Interscience [John Wiley & Sons], New York · Zbl 0836.14001
[8] Hitchin, N. J., Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A, 173-191 (1980) · Zbl 0436.53058 · doi:10.1098/rspa.1980.0028
[9] Hitchin, N. J., K\"{a}hlerian twistor spaces, Proc. London Math. Soc. (3), 133-150 (1981) · Zbl 0474.14024 · doi:10.1112/plms/s3-43.1.133
[10] Hitchin, N. J., Twistor geometry and nonlinear systems. Complex manifolds and Einstein’s equations, Lecture Notes in Math., 73-99 (1980), Springer, Berlin-New York · Zbl 0507.53025
[11] Honda, Nobuhiro, A Kummer type construction of self-dual metrics on the connected sum of four complex projective planes, J. Math. Soc. Japan, 139-160 (2000) · Zbl 0979.53082 · doi:10.2969/jmsj/05210139
[12] Honda, Nobuhiro, Double solid twistor spaces: the case of arbitrary signature, Invent. Math., 463-504 (2008) · Zbl 1165.32011 · doi:10.1007/s00222-008-0139-5
[13] Honda, Nobuhiro, A new series of compact minitwistor spaces and Moishezon twistor spaces over them, J. Reine Angew. Math., 197-235 (2010) · Zbl 1213.32011 · doi:10.1515/CRELLE.2010.041
[14] Honda, Nobuhiro, Moishezon twistor spaces on \(4\mathbb{CP}^2\), J. Algebraic Geom., 471-538 (2014) · Zbl 1317.32038 · doi:10.1090/S1056-3911-2013-00619-0
[15] Honda, Nobuhiro, Geometry of some twistor spaces of algebraic dimension one, Complex Manifolds, 105-130 (2015) · Zbl 1326.32034 · doi:10.1515/coma-2015-0009
[16] Honda, Nobuhiro, Double solid twistor spaces II: General case, J. Reine Angew. Math., 181-220 (2015) · Zbl 1316.32015 · doi:10.1515/crelle-2013-0003
[17] Honda, Nobuhiro, Algebraic dimension of twistor spaces whose fundamental system is a pencil, J. Lond. Math. Soc. (2), 989-1010 (2017) · Zbl 1376.32024 · doi:10.1112/jlms.12043
[18] Honda, Nobuhiro, Minitwistor spaces, Severi varieties, and Einstein-Weyl structure, Ann. Global Anal. Geom., 293-323 (2011) · Zbl 1222.53053 · doi:10.1007/s10455-010-9235-z
[19] Honda, Nobuhiro, Toric LeBrun metrics and Joyce metrics, Geom. Topol., 2923-2934 (2013) · Zbl 1281.53033 · doi:10.2140/gt.2013.17.2923
[20] Joyce, Dominic D., Explicit construction of self-dual \(4\)-manifolds, Duke Math. J., 519-552 (1995) · Zbl 0855.57028 · doi:10.1215/S0012-7094-95-07716-3
[21] Kreussler, Bernd, Twistor spaces over the connected sum of 3 projective planes, Compositio Math., 25-55 (1992) · Zbl 0766.53049
[22] Kreu\ss ler, B., On the algebraic dimension for twistor spaces over the connected sum of four complex projective planes, Geom. Dedicata, 263-285 (1998) · Zbl 0911.32041 · doi:10.1023/A:1005038726026
[23] Kreussler, B., Twistor spaces with a pencil of fundamental divisors, Doc. Math., 127-166 (1999) · Zbl 0926.32034
[24] LeBrun, Claude, Explicit self-dual metrics on \(\mathbf{C}{\rm P}_2\#\cdots \#\mathbf{C}\text{P}_2\), J. Differential Geom., 223-253 (1991) · Zbl 0725.53067
[25] LeBrun, Claude, Twistors, K\"{a}hler manifolds, and bimeromorphic geometry. I, J. Amer. Math. Soc., 289-316 (1992) · Zbl 0766.53050 · doi:10.2307/2152769
[26] LeBrun, Claude, Self-dual manifolds with positive Ricci curvature, Math. Z., 49-63 (1997) · Zbl 0868.53032 · doi:10.1007/PL00004578
[27] Pedersen, Henrik, Self-duality and differentiable structures on the connected sum of complex projective planes, Proc. Amer. Math. Soc., 859-864 (1994) · Zbl 0808.32028 · doi:10.2307/2160286
[28] Poon, Y. Sun, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom., 97-132 (1986) · Zbl 0583.53054
[29] Poon, Y. Sun, Algebraic dimension of twistor spaces, Math. Ann., 621-627 (1988) · Zbl 0665.32014 · doi:10.1007/BF01462887
[30] Poon, Y. Sun, On the algebraic structure of twistor spaces, J. Differential Geom., 451-491 (1992) · Zbl 0742.53024
[31] Sakai, Fumio, Anticanonical models of rational surfaces, Math. Ann., 389-410 (1984) · Zbl 0533.14016 · doi:10.1007/BF01450701
[32] Teleman, Andrei, On the torsion of the first direct image of a locally free sheaf, Ann. Inst. Fourier (Grenoble), 101-136 (2015) · Zbl 1329.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.