×

Moishezon twistor spaces on \(4\mathbb{CP}^{2}\). (English) Zbl 1317.32038

Let \(M\) be a four-dimensional compact real oriented manifold which admits a self-dual conformal structure. It is a classical construction to associate to \(M\) a three-dimensional compact complex manifold \(Z\), the so-called twistor space. It was shown by Campana that \(Z\) can only be Moishezon when \(M\) is either \(S^4\) or \(n\mathbb{CP}^2\), the connected sum of \(n\) copies of the projective plane.
Classification results for Moishezon twistor spaces \(Z\) are known in the case \(M=S^4\) by N. H. Kuiper [Ann. Math. (2) 50, 916–924 (1949; Zbl 0041.09303)], in the cases \(M=\mathbb{CP}^2\) and \(M=2\mathbb{CP}^2\) by Y. S. Poon [J. Differ. Geom. 24, 97–132 (1986; Zbl 0583.53054)], and in the case \(M=3\mathbb{CP}^2\) by Y.S. Poon. [J. Differ. Geom. 36, No. 2, 451–491 (1992; Zbl 0742.53024)], B. Kreußler and H. Kurke [Compos. Math. 82, No. 1, 25–55 (1992; Zbl 0766.53049)] and {C. LeBrun} [J. Differ. Geom. 34, No. 1, 223–253 (1991; Zbl 0725.53067)].
In the present article, the author continues the work on the classification of Moishezon twistor spaces by treating the case \(M=4\mathbb{CP}^2\). The classification in this case is achieved by considering the anticanonical map \(\Phi\) of \(Z\). It is shown that only three possibilities can occur: \(\Phi\) is either birational, or a rational double cover (\(Z\) is of double solid type), or the general fiber of \(\Phi\) is a smooth rational curve.
The author studies these possibilities in great detail: In each possible case, he gives an explicit description of the image of \(\Phi\). If \(Z\) is of double solid type, he furthermore gives explicit equations for the branch divisor of \(\Phi\).
The article also computes the dimension of the moduli spaces of Moishezon twistor spaces on \(4\mathbb{CP}^{2}\).

MSC:

32L25 Twistor theory, double fibrations (complex-analytic aspects)
32J17 Compact complex \(3\)-folds
32Q57 Classification theorems for complex manifolds
32G05 Deformations of complex structures

References:

[1] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425 – 461. · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[2] F. Campana, On twistor spaces of the class \?, J. Differential Geom. 33 (1991), no. 2, 541 – 549. · Zbl 0694.32017
[3] F. Campana and B. Kreußler, A conic bundle description of Moishezon twistor spaces without effective divisors of degree one, Math. Z. 229 (1998), no. 1, 137 – 162. · Zbl 0919.32019 · doi:10.1007/PL00004646
[4] Akira Fujiki, Twistor spaces of algebraic dimension two associated to a connected sum of projective planes, Compos. Math. 140 (2004), no. 4, 1097 – 1111. · Zbl 1078.32013 · doi:10.1112/S0010437X04000557
[5] N. J. Hitchin, Linear field equations on self-dual spaces, Proc. Roy. Soc. London Ser. A 370 (1980), no. 1741, 173 – 191. · Zbl 0436.53058 · doi:10.1098/rspa.1980.0028
[6] N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), no. 1, 133 – 150. · Zbl 0474.14024 · doi:10.1112/plms/s3-43.1.133
[7] Nobuhiro Honda, On a construction of the twistor spaces of Joyce metrics, J. Algebraic Geom. 17 (2008), no. 4, 709 – 750. · Zbl 1204.32010
[8] Nobuhiro Honda, Double solid twistor spaces: the case of arbitrary signature, Invent. Math. 174 (2008), no. 3, 463 – 504. · Zbl 1165.32011 · doi:10.1007/s00222-008-0139-5
[9] Nobuhiro Honda, Explicit construction of new Moishezon twistor spaces, J. Differential Geom. 82 (2009), no. 2, 411 – 444. · Zbl 1183.53043
[10] Nobuhiro Honda, A new series of compact minitwistor spaces and Moishezon twistor spaces over them, J. Reine Angew. Math. 642 (2010), 197 – 235. · Zbl 1213.32011 · doi:10.1515/CRELLE.2010.041
[11] Nobuhiro Honda, On pluri-half-anticanonical systems of LeBrun twistor spaces, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2051 – 2060. · Zbl 1205.32019
[12] Dominic D. Joyce, Explicit construction of self-dual 4-manifolds, Duke Math. J. 77 (1995), no. 3, 519 – 552. · Zbl 0855.57028 · doi:10.1215/S0012-7094-95-07716-3
[13] B. Kreußler, On the algebraic dimension for twistor spaces over the connected sum of four complex projective planes, Geom. Dedicata 71 (1998), no. 3, 263 – 285. · Zbl 0911.32041 · doi:10.1023/A:1005038726026
[14] Bernd Kreussler and Herbert Kurke, Twistor spaces over the connected sum of 3 projective planes, Compositio Math. 82 (1992), no. 1, 25 – 55. · Zbl 0766.53049
[15] N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916 – 924. · Zbl 0041.09303 · doi:10.2307/1969587
[16] Claude LeBrun, Explicit self-dual metrics on \?\?\(_{2}\)#\cdots#\?\?\(_{2}\), J. Differential Geom. 34 (1991), no. 1, 223 – 253. · Zbl 0725.53067
[17] Henrik Pedersen and Yat Sun Poon, Self-duality and differentiable structures on the connected sum of complex projective planes, Proc. Amer. Math. Soc. 121 (1994), no. 3, 859 – 864. · Zbl 0808.32028
[18] Y. Sun Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geom. 24 (1986), no. 1, 97 – 132. · Zbl 0583.53054
[19] Y. Sun Poon, Algebraic dimension of twistor spaces, Math. Ann. 282 (1988), no. 4, 621 – 627. · Zbl 0665.32014 · doi:10.1007/BF01462887
[20] Y. Sun Poon, On the algebraic structure of twistor spaces, J. Differential Geom. 36 (1992), no. 2, 451 – 491. · Zbl 0742.53024
[21] Massimiliano Pontecorvo, On twistor spaces of anti-self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 331 (1992), no. 2, 653 – 661. · Zbl 0754.53053
[22] Kristian Ranestad, Surfaces of degree 10 in the projective fourspace, Problems in the theory of surfaces and their classification (Cortona, 1988) Sympos. Math., XXXII, Academic Press, London, 1991, pp. 271 – 307. · Zbl 0827.14023
[23] Clifford Henry Taubes, The existence of anti-self-dual conformal structures, J. Differential Geom. 36 (1992), no. 1, 163 – 253. · Zbl 0822.53006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.