×

Heegaard Floer homologies and rational cuspidal curves. Lecture notes. (English) Zbl 1431.57031

Summary: This is an expanded version of the lecture course the second author gave at Winterbraids VI in Lille in February 2016.

MSC:

57R58 Floer homology
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
57K14 Knot polynomials
14H20 Singularities of curves, local rings

References:

[1] S. Baader, P. Feller, L. Lewark, L. Liechti, On the topological 4-genus of torus knots, preprint 2015, arxiv:1509.07634, to appear in Trans. Amer. Math. Soc. · Zbl 1385.57004
[2] J. Bodnár, Classification of rational unicuspidal curves with two Newton pairs, Acta Math. Hungar. 148 (2016), no. 2, 294-299. · Zbl 1374.14004
[3] J. Bodnár, A. Némethi, Lattice cohomology and rational cuspidal curves, Math. Res. Lett. 23 (2016), no. 2, 339-375. · Zbl 1353.32028
[4] M. Borodzik, E. Gorsky, Immersed concordances of links and Heegaard Floer homology, preprint 2016, arxiv:1601.07507, to appear in Indiana Univ. Math. J. · Zbl 1407.57005
[5] M. Borodzik, M. Hedden, The \(\Upsilon\) function of L-space knots is a Legendre transform, Math. Proc. Cambridge Philos. Soc., 1-11. doi:10.1017/S030500411700024X · Zbl 1411.57022
[6] M. Borodzik, J. Hom, Involutive Heegaard Floer homology and rational cuspidal curves, preprint 2016, arxiv:1609.08303. · Zbl 1442.57012
[7] M. Borodzik, C. Livingston, Heegaard Floer homologies and rational cuspidal curves, Forum of Math. Sigma, 2 (2014), e28, 23 pages. · Zbl 1325.14047
[8] M. Borodzik, T. Moe, Topological obstructions for rational cuspidal curves in Hirzebruch surfaces, Michigan Math. J. 65 (2016), no. 4, 761-797. · Zbl 1366.14027
[9] E. Brieskorn, H. Knörrer, Plane Algebraic Curves, Birkhäuser, Basel, 1986. · Zbl 0588.14019
[10] W. Burau, Kennzeichnung der Schlauchknoten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 9 (1932), 125-133. · JFM 58.0615.01
[11] A. Campillo, F. Delgado, S. Gusein-Zade, The Alexander polynomial of a plane curve singularity via the ring of functions on it, Duke Math. J. 117 (2003), no. 1, 125-156. · Zbl 1028.32013
[12] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5-173. · Zbl 0213.25202
[13] J. Coolidge, A treatise on plane algebraic curves, Oxford Univ. Press, Oxford, 1928. · JFM 54.0684.02
[14] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals Math. Studies 110, Princeton University Press, Princeton, 1985. · Zbl 0628.57002
[15] P. Feller, D. Krcatovich, On cobordisms between knots, braid index, and the Upsilon-invariant, preprint 2016, arxiv:1602.02637. · Zbl 1383.57003
[16] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair, Proceedings of São Carlos Workshop 2004 Real and Complex Singularities, Series Trends in Mathematics, Birkhäuser 2007, 31-46. · Zbl 1120.14019
[17] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, On rational cuspidal projective plane curves, Proc. of London Math. Soc., 92 (2006), 99-138. · Zbl 1115.14021
[18] H. Flenner and M. Zaidenberg, On a class of rational cuspidal plane curves, Manuscripta Math. 89 (1996), no. 4, 439-459. · Zbl 0868.14014
[19] T. Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25. American Mathematical Society, Providence, RI, 2000. · Zbl 0949.58032
[20] P. Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008), no. 5, 1151-1169. · Zbl 1149.57019
[21] R. E. Gompf, A. I. Stipsicz, 4-Manifolds and Kirby Calculus (Graduate Studies in Mathematics), American Mathematical Society, 1999. · Zbl 0933.57020
[22] G-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer-Verlag, Berlin-Heidelberg-New York, 2006. · Zbl 1125.32013
[23] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Revised and corrected reprint of the 1983 original. Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990. · Zbl 0515.34001
[24] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. · Zbl 0367.14001
[25] M. Hedden, Notions of positivity and the Ozsváth-Szabó concordance invariant, J. Knot Theory Ramifications 19 (2010), no. 5, 617-629. · Zbl 1195.57029
[26] M. Hedden, On knot Floer homology and cabling. II., Int. Math. Res. Not. IMRN 2009, 2248-2274. · Zbl 1172.57008
[27] K. Hendricks, C. Manolescu, Involutive Heegaard Floer homology, preprint 2015, arxiv:1507.00383, to appear in Duke Math. Journal. · Zbl 1383.57036
[28] K. Hendricks, C. Manolescu, I. Zemke, A connected sum formula for involutive Heegaard Floer homology, preprint 2016, arxiv:1607.07499. · Zbl 1407.57025
[29] J. Hom, A note on cabling and L-space surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 219-223. · Zbl 1221.57019
[30] J. Hom, A survey on Heegaard Floer homology and concordance, preprint 2015, arxiv:1512.00383. · Zbl 1360.57002
[31] J. Hom, T. Lidman and L. Watson, The Alexander invariant, Seifert forms, and categorification, preprint, arXiv: 1501.04866, to appear in J. Topology. · Zbl 1392.57009
[32] S. Iitaka, On logarithmic Kodaira dimension of algebraic varietes, in: ‘Complex Analysis and Algebraic Geometry’ (A collection of papers dedicated to K. Kodaira), Iwanami, 1977, pp. 175-189. · Zbl 0351.14016
[33] A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006), 1429-1457. · Zbl 1129.57039
[34] A. Juhász, A survey of Heegaard Floer homology, New Ideas in Low Dimensional Topology, World Scientific, 2014, 237-296. · Zbl 1315.57002
[35] A. Juhász, D. Thurston, Naturality and mapping class groups in Heegaard Floer homology, preprint 2012, arxiv:1210.4996. · Zbl 1510.57001
[36] H. Kashiwara, Fonctions rationnelles de type (0,1) sur le plan projectif complexe, Osaka J. Math. 24 (1987), no. 3, 521-577. · Zbl 0668.14017
[37] T. Kishimoto, Projective plane curves whose complements have logarithmic Kodaira dimension one, Japan. J. Math. 27 (2001), no. 2, 275-310. · Zbl 1068.14071
[38] K. Kodaira, D. Spencer, On deformations of complex analytic structures. I, II., Ann. of Math. 67 (1958) 328-466. · Zbl 1307.14016
[39] M. Koras, K. Palka, The Coolidge-Nagata conjecture, Duke Math. J. (2017), 61 pp, DOI 00127094-2017-0010. · Zbl 1393.14029
[40] D. Krcatovich, The reduced knot Floer complex, Topology Appl. 194 (2015), 171-201. · Zbl 1326.57020
[41] P. Kronheimer, T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797-808. · Zbl 0851.57023
[42] P. Kronheimer, T. Mrowka, Monopoles and three – manifolds, New Mathematical Monographs, 10. Cambridge University Press, Cambridge, 2007. · Zbl 1158.57002
[43] Ç. Kutluhan, Y. Lee, C. H. Taubes \(, H F = H M\) I: Heegaard Floer homology and Seiberg-Witten Floer homology, preprint 2011, arxiv:1007.1979v5 · Zbl 1493.57026
[44] R. Lee, D. Wilczyński, Locally flat 2-spheres in simply connected 4 – manifolds, Comment. Math. Helv. 65 (1990), no. 3, 388-412. · Zbl 0723.57015
[45] A. Levine and D.Ruberman, Generalized Heegaard Floer correction terms, Proceedings of the 20th Gökova Geometry/Topology Conference, 76-96. · Zbl 1333.57024
[46] R. Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006), 955-1097. · Zbl 1130.57035
[47] T. Liu, On planar rational cuspidal curves, Ph.D. thesis, 2014, at M.I.T., available at . · Zbl 1358.14006
[48] Y. Liu, L-space surgeries on links, to appear in Quant. Topol., arXiv:1409.0075. · Zbl 1381.57019
[49] I. Luengo, The \(\mu \)-constant stratum is not smooth, Invent. Math. 90 (1987) 139-152. · Zbl 0627.32018
[50] I. Luengo, A. Melle Hernández, A. Némethi, Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 14 (2005) 543-565. · Zbl 1084.32022
[51] R. Lipshitz, P. Ozsváth, D. Thurston, Bordered Heegaard Floer homology: Invariance and pairing, preprint, arXiv:0810.0687. · Zbl 1422.57080
[52] R. Lipshitz, P. Ozsváth, D. Thurston, Tour of bordered Floer theory, Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8085-8092. · Zbl 1256.57012
[53] R. Lipshitz, P. Ozsváth, D. Thurston, Notes on bordered Floer homology, Contact and symplectic topology, 275-355, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014. · Zbl 1335.53113
[54] C. Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom. Topol. 8 (2004), 735-742. · Zbl 1067.57008
[55] C. Manolescu, An introduction to knot Floer homology, preprint 2014, arxiv:1401.7107. To appear in Proceedings of the 2013 SMS Summer School on Homology Theories of Knots and Links. · Zbl 1372.57002
[56] C. Manolescu, B. Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 2007, no. 20, Art. ID rnm077, 21 pp. · Zbl 1132.57013
[57] C. Manolescu, P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry-Topology Conference 2007, 60-81, Gökova Geometry/Topology Conference (GGT), Gökova, 2008. · Zbl 1195.57032
[58] C. Manolescu, P. Ozsváth, Heegaard Floer homology and integer surgeries on links, preprint 2010, arxiv:1011.1317. · Zbl 1195.57032
[59] T. Matsuoka, F. Sakai, The degree of rational cuspidal curves, Math. Ann. 285 (1989), 233-247. · Zbl 0661.14023
[60] J. Milnor, Lectures on the \(h\)-cobordism theorem, Princeton University Press, Princeton, NJ, 1965. · Zbl 0161.20302
[61] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies. 61, Princeton University Press and the University of Tokyo Press, Princeton, NJ, 1968. · Zbl 0184.48405
[62] T. K. Moe, Rational cuspidal curves, Master Thesis, University of Oslo 2008, available at arXiv:1511.02691.
[63] T. K. Moe, Rational cuspidal curves with four cusps on Hirzebruch surfaces, Le Matematiche Vol. LXIX (2014) Fasc. II, 295-318. doi: 10.4418/2014.69.2.25. · Zbl 1331.14034
[64] T. K. Moe, On the number of cusps on cuspidal curves on Hirzebruch surfaces, Math. Nachrichten. 288 (2015), 76-88. · Zbl 1317.14064
[65] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745. · Zbl 0202.54701
[66] M. Nagata, On rational surfaces. I: Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci., Univ. Kyoto, Ser. A 32 (1960), 351-370. · Zbl 0100.16703
[67] M. Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, 88. Marcel Dekker, Inc., New York, 1984. · Zbl 0556.14012
[68] P. Nayar, B. Pilat, A note on the rational cuspidal curves, Bull. Polish Acad. Science., 62 (2014), no. 2, 117-123. · Zbl 1307.14044
[69] A. Némethi, L Nicolaescu, Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002) 269-328. · Zbl 1031.32023
[70] A. Némethi, L. Nicolaescu, Seiberg-Witten invariants and surface singularities II, singularities with good \(\mathbb{C}^*\)-action, J. London Math. Soc. 69 (2004) 593-607. · Zbl 1061.32021
[71] A. Némethi, L. Nicolaescu, Seiberg-Witten invariants and surface singularities: splicings and cyclic covers, Sel. Math. New Ser. 11 (2005), 399-451. · Zbl 1110.14006
[72] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577-608. Erratum: Knot Floer homology detects fibred knots Invent. Math. 177 (2009), no. 1, 235-238. · Zbl 1138.57031
[73] Y. Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13 (2009), no. 5, 2991-3019. · Zbl 1203.57005
[74] Y. Ni, Z. Wu, Cosmetic surgeries on knots in \(S^3,\) J. Reine Angew. Math. 706 (2015), 1-17. · Zbl 1328.57010
[75] L. Nicolaescu, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, 28. American Mathematical Society, Providence, RI, 2000. · Zbl 0978.57027
[76] S. Orevkov, On rational cuspidal curves. I. Sharp estimates for degree via multiplicity, Math. Ann. 324 (2002), 657-673. · Zbl 1014.14010
[77] P. Ozsváth, A. Stipsicz, Z. Szabó, Concordance homomorphisms from knot Floer homology, preprint 2014, arxiv:1407.1795. · Zbl 1383.57020
[78] P. Ozsváth, A. Stipsicz, Z. Szabó, Grid homology for knots and links, Mathematical Surveys and Monographs, 208. American Mathematical Society, Providence, RI, 2015. · Zbl 1348.57002
[79] P. Ozsváth, Z. Szabó, Absolutely graded Floer homologies and intersection forms for four – manifolds with boundary, Adv. Math. 173 (2003), 179-261. · Zbl 1025.57016
[80] P. Ozsváth, Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225-254. · Zbl 1130.57303
[81] P. Ozsváth, Z. Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615-639. · Zbl 1037.57027
[82] P. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027-1158. · Zbl 1073.57009
[83] P. Ozsváth, Z. Szabó, Holomorphic disks and three manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159-1245. · Zbl 1081.57013
[84] P. Ozsváth, Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58-116. · Zbl 1062.57019
[85] P. Ozsváth, Z. Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311-334. · Zbl 1056.57020
[86] P. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, Topology, 44 (2005), 1281-1300. · Zbl 1077.57012
[87] P. Ozsváth, Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1-33. · Zbl 1076.57013
[88] P. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326-400. · Zbl 1099.53058
[89] P. Ozsváth, Z. Szabó, An introduction to Heegaard Floer homology, in: Floer homology, gauge theory, and low-dimensional topology, 3-27, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006. · Zbl 1107.57022
[90] P. Ozsváth, Z. Szabó, Lectures on Heegaard Floer homology, in: Floer homology, gauge theory, and low-dimensional topology, 29-70, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006. · Zbl 1105.57029
[91] P. Ozsváth, Z. Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101-153. · Zbl 1181.57018
[92] P. Ozsváth, Z. Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), 1-68. · Zbl 1226.57044
[93] K. Palka, Cuspidal curves, minimal models and Zaidenberg’s finiteness conjecture, J. Reine Angew. Math (Crelle’s Journal), preprint 2016, arxiv:1405.5346. · Zbl 1471.14071
[94] K. Palka, The Coolidge-Nagata conjecture, part I, Adv. Math. 267 (2014), 1-43. · Zbl 1327.14153
[95] K. Palka, T. Pełka, Classification of planar rational cuspidal curves. I.\( \mathbb{C}^{* *} \)-fibrations, preprint 2016, arxiv:1609.03992. · Zbl 1375.14107
[96] T. Perutz, Hamiltonian handleslides for Heegaard Floer homology, Proceedings of Gökova Geometry-Topology Conference 2007, 15-35, Gökova Geometry/Topology Conference (GGT), Gökova, 2008. · Zbl 1193.30059
[97] T. Peters, A concordance invariant from the Floer homology of \(\pm 1\) surgeries, preprint 2010, arxiv:1003.3038.
[98] J. Piontkowski, On the number of cusps of rational cuspidal plane curves, Experiment. Math. 16 (2007), no. 2, 251-255. · Zbl 1147.14011
[99] J. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005. · Zbl 1134.11012
[100] J. Rasmussen, Floer homology and knot complements, Harvard thesis, 2003, available at arxiv:math/0306378.
[101] D. Rolfsen, Knots and links, Publish or Perish, 1976. · Zbl 0339.55004
[102] J. Robbin, D. Salamon, The Maslov index for paths, Topology 32 (4) (1993), 827-844. · Zbl 0798.58018
[103] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51-59. · Zbl 0789.57004
[104] S. Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom. Topol. 15 (2015), no. 5, 2479-2515. · Zbl 1331.57015
[105] A. Scorpan, The wild world of 4 – manifolds, American Mathematical Society, Providence, RI, 2005. · Zbl 1075.57001
[106] K. Tono, Rational unicuspidal plane curves with \(\overline{\kappa} = 1,\) Newton polyhedra and singularities (Kyoto, 2001). Sūrikaisekikenkyūsho Kōkyūroku 1233 (2001), 82-89. · Zbl 0992.14503
[107] K. Tono, On the number of cusps of cuspidal plane curves, Math. Nachr. 278 (2005), 216-221. · Zbl 1069.14029
[108] S. Tsunoda, The complements of projective plane curves, RIMS-Kôkyûroku, 446 (1981), 48-56, available at . · Zbl 0541.14030
[109] V. Turaev, Torsion invariants of \(\operatorname{Spin}^c\)-structures on 3-manifolds, Math. Res. Lett., 4 (5) (1997), 679-695. · Zbl 0891.57019
[110] V. Turaev, Torsions of 3-dimensional manifolds, Progress in Mathematics, 208. Birkhäuser Verlag, Basel, 2002. · Zbl 1012.57002
[111] I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in \(\Bbb P^2,\) Proc. Japan Acad. Ser. A. Math. Sci. 54 (1978), 157-162. · Zbl 0404.14009
[112] C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge, 2004. · Zbl 1057.14001
[113] O. Zariski, On the topology of algebroid singularities, Amer. J. Math. 54 (1932), 453-465. · JFM 58.0614.02
[114] O. Zariski, Algebraic surfaces, With appendices by S. Abhyankar, J. Lipman and D. Mumford. Preface to the appendices by Mumford. Reprint of the second (1971) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
[115] I. Zemke, Quasi-stabilization and basepoint moving maps in link Floer homology, preprint 2016, arxiv:1604.04316. · Zbl 1387.57020
[116] I. Zemke, Connected sums and involutive knot Floer homology, preprint 2017, arxiv:1705.01117. · Zbl 1473.57043
[117] H. Żoładek, The monodromy group, Mathematical monographs (new series), 67, Birkhäuser Verlag, Basel, 2006. Copyright Cellule MathDoc 2019 · Zbl 1103.32015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.