×

Uniform energy distribution in a pattern-forming system of surface charges. (English) Zbl 1487.49049

Summary: We consider a variational model for a charge density \(u\in\{-1,1\}\) on a (hyper)plane, with a short-range attraction coming from the interfacial energy and a long-range repulsion coming from the electrostatic energy. This competition leads to pattern formation. We prove that the interfacial energy density is (asymptotically) equidistributed at scales large compared to the scale of the pattern. We follow the strategy laid out by G. Alberti et al. [J. Am. Math. Soc. 22, No. 2, 569–605 (2009; Zbl 1206.49046)]. The challenge comes from the reduced screening capabilities of surface charges compared to the volume charges considered in the aforementioned work.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
35J50 Variational methods for elliptic systems
49S05 Variational principles of physics
49N60 Regularity of solutions in optimal control

Citations:

Zbl 1206.49046

References:

[1] Adams, R. A. and Fournier, J. J. F.: Sobolev spaces. Second edition. Pure and Applied Math-ematics (Amsterdam) 140, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] Alberti, G., Choksi, R. and Otto, F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Amer. Math. Soc. 22 (2009), no. 2, 569-605. · Zbl 1206.49046
[3] Ambrosio, L., Fusco, N. and Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. · Zbl 0957.49001
[4] Armstrong, S. N. and Serfaty, S.: Local laws and rigidity for Coulomb gases at any temperat-ure. Ann. Probab. 49 (2021), no. 1, 46-121. · Zbl 1457.82004
[5] Armstrong, S. N. and Smart, C. K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 423-481. · Zbl 1344.49014
[6] Bourne, D. P., Peletier, M. A. and Theil, F.: Optimality of the triangular lattice for a particle system with Wasserstein interaction. Comm. Math. Phys. 329 (2014), no. 1, 117-140. · Zbl 1294.82006
[7] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5, North-Holland Publishing Co., Amsterdam-London; · Zbl 0252.47055
[8] American Elsevier Publishing Co., New York, 1973.
[9] Caffarelli, L. and Silvestre, L.: An extension problem related to the fractional Laplacian. Com-mun. Partial Differ. Equations 32 (2007), no. 8, 1245-1260. · Zbl 1143.26002
[10] Choksi, R. and Peletier, M. A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional. SIAM J. Math. Anal. 42 (2010), no. 3, 1334-1370. · Zbl 1210.49050
[11] Cicalese, M. and Spadaro, E.: Droplet minimizers of an isoperimetric problem with long-range interactions. Comm. Pure Appl. Math. 66 (2013), no. 8, 1298-1333. · Zbl 1269.49085
[12] Cinti, A. and Otto, F.: Interpolation inequalities in pattern formation. J. Funct. Anal. 271 (2016), no. 11, 3348-3392. · Zbl 1350.49071
[13] Conti, S.: Branched microstructures: scaling and asymptotic self-similarity. Comm. Pure Appl. Math. 53 (2000), no. 11, 1448-1474. · Zbl 1032.74044
[14] Daneri, S. and Runa, E.: Exact periodic stripes for minimizers of a local/nonlocal interaction functional in general dimension. Arch. Ration. Mech. Anal. 231 (2019), no. 1, 519-589. · Zbl 1410.82005
[15] Dautray, R. and Lions, J.-L.: Mathematical analysis and numerical methods for science and technology. Vol. 3. Spectral theory and applications. Springer-Verlag, Berlin, 1990. · Zbl 0784.73001
[16] Desimone, A. Kohn, R. V., Müller, S. and Otto, F.: A reduced theory for thin-film micromag-netics. Comm. Pure Appl. Math. 55 (2002), no. 11, 1408-1460. · Zbl 1027.82042
[17] Esposito, L. and Fusco, N.: A remark on a free interface problem with volume constraint. J. Convex Anal. 18 (2011), no. 2, 417-426. · Zbl 1216.49033
[18] Farmer, B., Esedoḡlu, S. and Smereka, P.: Crystallization for a Brenner-like potential. Comm. Math. Phys. 349 (2017), no. 3, 1029-1061, · Zbl 1381.74044
[19] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Springer, Berlin, 2001. · Zbl 1042.35002
[20] Giuliani, A. and Müller, S.: Striped periodic minimizers of a two-dimensional model for martensitic phase transitions. Comm. Math. Phys. 309 (2012), no. 2, 313-339. · Zbl 1448.74082
[21] Giusti, E.: Minimal surfaces and functions of bounded variation. Monographs in Mathematics, Birkhäuser, Boston, 1984. · Zbl 0545.49018
[22] Goldman, M. and Otto, F.: A variational proof of partial regularity for optimal transportation maps. Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1209-1233. · Zbl 1465.35263
[23] Goldman, M. and Runa, E.: On the optimality of stripes in a variational model with non-local interactions. Calc. Var. Partial Differential Equations 58 (2019), no. 3, Paper No. 103, 26pp. · Zbl 1415.49033
[24] Knüpfer, H. and Muratov, C. B.: On an isoperimetric problem with a competing nonlocal term I: The planar case. Comm. Pure Appl. Math. 66 (2013), no. 7, 1129-1162. · Zbl 1269.49087
[25] Lu, J. and Otto, F.: Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model. Comm. Pure Appl. Math. 67 (2014), no. 10, 1605-1617. · Zbl 1301.49002
[26] Maggi, F.: Sets of finite perimeter and geometric variational problems. Cambridge Studies in Advanced Mathematics 135, Cambridge University Press, Cambridge, 2012. · Zbl 1255.49074
[27] Miura, T. and Otto, F.: Sharp boundary ”-regularity of optimal transport maps. Adv. Math. 381 (2021), Paper No. 107603, 65 pp. · Zbl 1459.49032
[28] Müller, S: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differential Equations 1 (1993), no. 2, 169-204. · Zbl 0821.49015
[29] Otto, F. and Viehmann, T.: Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy. Calc. Var. Partial Differential Equations 38 (2010), no. 1-2, 135-181. · Zbl 1193.49046
[30] Theil, F.: A proof of crystallization in two dimensions. Comm. Math. Phys. 262 (2006), no. 1, 209-236. · Zbl 1113.82016
[31] Weinan, E. and Li, D.: On the crystallization of 2D hexagonal lattices. Comm. Math. Phys. 286, 2009, no. 3, 1099-1140. · Zbl 1180.82191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.