×

Asymptotic self-similarity of minimizers and local bounds in a model of shape-memory alloys. (English) Zbl 1481.74601

Summary: We prove that microstructures in shape-memory alloys have a self-similar refinement pattern close to austenite-martensite interfaces, working within the scalar Kohn-Müller model. The latter is based on nonlinear elasticity and includes a singular perturbation representing the energy of the interfaces between martensitic variants. Our results include the case of low-hysteresis materials in which one variant has a small volume fraction. Precisely, we prove asymptotic self-similarity in the sense of strong convergence of blow-ups around points at the austenite-martensite interface. Key ingredients in the proof are pointwise estimates and local energy bounds. This generalizes previous results by one of us to various boundary conditions, arbitrary rectangular domains, and arbitrary volume fractions of the martensitic variants, including the regime in which the energy scales as \(\varepsilon^{2/3}\) as well as the one where the energy scales as \(\varepsilon^{1/2}\).

MSC:

74N15 Analysis of microstructure in solids
74G65 Energy minimization in equilibrium problems in solid mechanics
74B20 Nonlinear elasticity
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics

References:

[1] Alberti, G.; Choksi, R.; Otto, F., Uniform energy distribution for an isoperimetric problem with long-range interactions, J. Am. Math. Soc., 22, 2, 569-605 (2009) · Zbl 1206.49046 · doi:10.1090/S0894-0347-08-00622-X
[2] Bechtold, C.; Chluba, C.; Lima de Miranda, R.; Quandt, E., High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films, Appl. Phys. Lett., 101, 9 (2012) · doi:10.1063/1.4748307
[3] Bella, P.; Goldman, M., Nucleation barriers at corners for cubic-to-tetragonal phase transformation, Proc. R. Soc. Edinb., Sect. A, 145, 715-724 (2015) · Zbl 1327.74126 · doi:10.1017/S0308210515000086
[4] Bella, P.; Kohn, R. V., Wrinkles as the result of compressive stresses in an annular thin film, Commun. Pure Appl. Math., 67, 5, 693-747 (2014) · Zbl 1302.74105 · doi:10.1002/cpa.21471
[5] Bellova, K., Julia, A., Otto, F.: Uniform energy distribution in a pattern-forming system of surface charges. Rev. Mat. Iberoam. doi:10.4171/RMI/1308. (Online first 2021) · Zbl 1487.49049
[6] Ben Belgacem, H.; Conti, S.; DeSimone, A.; Müller, S., Energy scaling of compressed elastic films – three-dimensional elasticity and reduced theories, Arch. Ration. Mech. Anal., 164, 1-37 (2002) · Zbl 1041.74048 · doi:10.1007/s002050200206
[7] Bourne, D.; Conti, S.; Müller, S., Energy bounds for a compressed elastic film on a substrate, J. Nonlinear Sci., 27, 453-494 (2017) · Zbl 1387.74069 · doi:10.1007/s00332-016-9339-0
[8] Brancolini, A.; Wirth, B., Optimal energy scaling for micropatterns in transport networks, SIAM J. Math. Anal., 49, 1, 311-359 (2017) · Zbl 1394.49044 · doi:10.1137/15M1050227
[9] Brancolini, A.; Rossmanith, C.; Wirth, B., Optimal micropatterns in 2D transport networks and their relation to image inpainting, Arch. Ration. Mech. Anal., 228, 279-308 (2018) · Zbl 1390.90095 · doi:10.1007/s00205-017-1192-2
[10] Capella, A.; Otto, F., A rigidity result for a perturbation of the geometrically linear three-well problem, Commun. Pure Appl. Math., 62, 12, 1632-1669 (2009) · Zbl 1331.82064 · doi:10.1002/cpa.20297
[11] Capella, A.; Otto, F., A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy, Proc. R. Soc. Edinb., Sect. A, 142, 2, 273-327 (2012) · Zbl 1251.82049 · doi:10.1017/S0308210510000478
[12] Chan, A.; Conti, S., Energy scaling and branched microstructures in a model for shape-memory alloys with \(SO(2)\) invariance, Math. Models Methods Appl. Sci., 25, 1091-1124 (2015) · Zbl 1311.49030 · doi:10.1142/S0218202515500281
[13] Choksi, R., Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci., 11, 223-236 (2001) · Zbl 1023.82015 · doi:10.1007/s00332-001-0456-y
[14] Choksi, R.; Kohn, R. V., Bounds on the micromagnetic energy of a uniaxial ferromagnet, Commun. Pure Appl. Math., 51, 3, 259-289 (1998) · Zbl 0909.49004 · doi:10.1002/(SICI)1097-0312(199803)51:3<259::AID-CPA3>3.0.CO
[15] Choksi, R.; Kohn, R. V.; Otto, F., Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy, Commun. Math. Phys., 201, 1, 61-79 (1999) · Zbl 1023.82011 · doi:10.1007/s002200050549
[16] Choksi, R.; Kohn, R. V.; Otto, F., Energy minimization and flux domain structure in the intermediate state of a type-I superconductor, J. Nonlinear Sci., 14, 119-171 (2004) · Zbl 1136.82044 · doi:10.1007/s00332-004-0568-2
[17] Conti, S., Branched microstructures: scaling and asymptotic self-similarity, Commun. Pure Appl. Math., 53, 1448-1474 (2000) · Zbl 1032.74044 · doi:10.1002/1097-0312(200011)53:11<1448::AID-CPA6>3.0.CO;2-C
[18] Conti, S.; Ortiz, M., Dislocation microstructures and the effective behavior of single crystals, Arch. Ration. Mech. Anal., 176, 103-147 (2005) · Zbl 1064.74144 · doi:10.1007/s00205-004-0353-2
[19] Conti, S.; Zwicknagl, B., Low volume-fraction microstructures in martensites and crystal plasticity, Math. Models Methods Appl. Sci., 26, 1319-1355 (2016) · Zbl 1347.49016 · doi:10.1142/S0218202516500317
[20] Conti, S.; Otto, F.; Serfaty, S., Branched microstructures in the Ginzburg-Landau model of type-I superconductors, SIAM J. Math. Anal., 48, 2994-3034 (2016) · Zbl 1351.82116 · doi:10.1137/15M1028960
[21] Conti, S.; Diermeier, J.; Zwicknagl, B., Deformation concentration for martensitic microstructures in the limit of low volume fraction, Calc. Var. Partial Differ. Equ., 56, 16 (2017) · Zbl 1362.49008 · doi:10.1007/s00526-016-1097-1
[22] Conti, S.; Goldman, M.; Otto, F.; Serfaty, S., A branched transport limit of the Ginzburg-Landau functional, J. Éc. Polytech. Math., 5, 317-375 (2018) · Zbl 1405.35201 · doi:10.5802/jep.72
[23] Conti, S.; Diermeier, J.; Melching, C.; Zwicknagl, B., Energy scaling laws for geometrically linear elasticity models for microstructures in shape memory alloys, ESAIM Control Optim. Calc. Var., 26, 115 (2020) · Zbl 1459.49004 · doi:10.1051/cocv/2020020
[24] Cui, J.; Chu, Y. S.; Famodu, O. O.; Furuya, Y.; Hattrick-Simpers, J.; James, R. D.; Ludwig, A.; Thienhaus, S.; Wuttig, M.; Zhang, Z.; Takeuchi, I., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater., 5, 286-290 (2006) · doi:10.1038/nmat1593
[25] Diermeier, J.: Nichtkonvexe Variationsprobleme und Mikrostrukturen. Bachelor’s thesis, Universität, Bonn (2010)
[26] Fonseca, I.; Gangbo, W., Local invertibility of Sobolev functions, SIAM J. Math. Anal., 26, 2, 280-304 (1995) · Zbl 0839.30018 · doi:10.1137/S0036141093257416
[27] Giuliani, A.; Müller, S., Striped periodic minimizers of a two-dimensional model for martensitic phase transitions, Commun. Math. Phys., 309, 313-339 (2012) · Zbl 1448.74082 · doi:10.1007/s00220-011-1374-y
[28] Goldman, M., Self-similar minimizers of a branched transport functional, Indiana Univ. Math. J., 69, 1073-1104 (2020) · Zbl 1445.49025 · doi:10.1512/iumj.2020.69.7945
[29] Gu, H.; Bumke, L.; Chluba, C.; Quandt, E.; James, R. D., Phase engineering and supercompatibility of shape memory alloys, Mater. Today, 21, 3, 265-277 (2018) · doi:10.1016/j.mattod.2017.10.002
[30] Hencl, S.; Koskela, P., Mappings of finite distortion: composition operator, Ann. Acad. Sci. Fenn. Math., 65-80 (2008), Helsinki: Finnish Academy of Science and Letters, Helsinki · Zbl 1139.26004
[31] Hencl, S.; Koskela, P., Lectures on Mappings of Finite Distortion (2014) · Zbl 1293.30051 · doi:10.1007/978-3-319-03173-6
[32] James, R. D., Materials from mathematics, Bull. Am. Math. Soc., 56, 1-28 (2019) · Zbl 1409.74035 · doi:10.1090/bull/1644
[33] James, R. D.; Zhang, Z.; Manosa, L.; Planes, A.; Saxena, A., A way to search for multiferroic materials with “unlikely” combinations of physical properties, The Interplay of Magnetism and Structure in Functional Materials (2005), Berlin: Springer, Berlin
[34] Jin, W.; Sternberg, P., Energy estimates of the von Kármán model of thin-film blistering, J. Math. Phys., 42, 192-199 (2001) · Zbl 1028.74036 · doi:10.1063/1.1316058
[35] Kleprlík, L., Mappings of finite signed distortion: Sobolev spaces and composition of mappings, J. Math. Anal. Appl., 386, 2, 870-881 (2012) · Zbl 1236.46031 · doi:10.1016/j.jmaa.2011.08.045
[36] Knüpfer, H.; Kohn, R. V., Minimal energy for elastic inclusions, Proc. R. Soc., Math. Phys. Eng. Sci., 467, 2127, 695-717 (2011) · Zbl 1419.74128 · doi:10.1098/rspa.2010.0316
[37] Knüpfer, H.; Muratov, C. B., Domain structure of bulk ferromagnetic crystals in applied fields near saturation, J. Nonlinear Sci., 21, 921-962 (2011) · Zbl 1298.35014 · doi:10.1007/s00332-011-9105-2
[38] Knüpfer, H.; Otto, F., Nucleation barriers for the cubic-to-tetragonal phase transformation in the absence of self-accommodation, Z. Angew. Math. Mech., 99 (2019) · Zbl 07805131 · doi:10.1002/zamm.201800179
[39] Knüpfer, H.; Kohn, R. V.; Otto, F., Nucleation barriers for the cubic-to-tetragonal phase transformation, Commun. Pure Appl. Math., 66, 6, 867-904 (2013) · Zbl 1322.74057 · doi:10.1002/cpa.21448
[40] Kohn, R. V.; Müller, S., Branching of twins near an austenite-twinned martensite interface, Philos. Mag. A, 66, 697-715 (1992) · doi:10.1080/01418619208201585
[41] Kohn, R. V.; Müller, S., Surface energy and microstructure in coherent phase transitions, Commun. Pure Appl. Math., XLVII, 405-435 (1994) · Zbl 0803.49007 · doi:10.1002/cpa.3160470402
[42] Kohn, R. V.; Wirth, B., Optimal fine-scale structures in compliance minimization for a shear load, Commun. Pure Appl. Math., 69, 8, 1572-1610 (2016) · Zbl 1383.74073 · doi:10.1002/cpa.21589
[43] Koser, M.: On a variational model for low-volume fraction microstructures in martensites: Properties of minimizers. Master’s thesis, TU, Berlin (2020)
[44] Landau, L., The intermediate state of supraconductors, Nature, 141, 688 (1938) · doi:10.1038/141688a0
[45] Landau, L., On the theory of the intermediate state of superconductors, J. Phys. USSR, 7, 99 (1943)
[46] Louie, M.; Kislitsyn, M.; Bhattacharya, K.; Haile, S., Phase transformation and hysteresis behavior in \(Cs_{1-x}\) Rb_xH_2PO_4, Solid State Ion., 181, 173-179 (2010) · doi:10.1016/j.ssi.2008.11.014
[47] Lu, V., On imbedding theorems for spaces of functions with partial derivatives of various degrees of summability, Vestn. Leningr. Univ., 16, 23-37 (1961) · Zbl 0100.31803
[48] Murat, F., Compacité par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 5, 489-507 (1978) · Zbl 0399.46022
[49] Rüland, A., A rigidity result for a reduced model of a cubic-to-orthorhombic phase transition in the geometrically linear theory of elasticity, J. Elast., 123, 2, 137-177 (2016) · Zbl 1333.74064 · doi:10.1007/s10659-015-9553-2
[50] Seiner, H.; Plucinsky, P.; Dabade, V.; Benešová, B.; James, R. D., Branching of twins in shape memory alloys revisited, J. Mech. Phys. Solids, 141 (2020) · doi:10.1016/j.jmps.2020.103961
[51] Simon, T. M., Quantitative aspects of the rigidity of branching microstructures in shape memory alloys via h-measures, SIAM J. Math. Anal., 53, 4537-4567 (2021) · Zbl 1480.74244 · doi:10.1137/18M1220017
[52] Simon, T. M., Rigidity of branching microstructures in shape memory alloys, Arch. Ration. Mech. Anal., 241, 1707-1783 (2021) · Zbl 1468.74048 · doi:10.1007/s00205-021-01679-8
[53] Srivastava, V.; Chen, X.; James, R. D., Hysteresis and unusual magnetic properties in the singular Heusler alloy \(\text{Ni}_{45}\text{Co}_5\text{Mn}_{40}\text{Sn}_{10} \), Appl. Phys. Lett., 97 (2010) · doi:10.1063/1.3456562
[54] Tartar, L., Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, 136-212 (1979) · Zbl 0437.35004
[55] Viehmann, T.: Uniaxial ferromagnets. Ph.D. thesis, Universität, Bonn (2009). Available from https://bib.math.uni-bonn.de/downloads/bms/BMS-396.pdf · Zbl 1279.78003
[56] Zarnetta, R.; Takahashi, R.; Young, M. L.; Savan, A.; Furuya, Y.; Thienhaus, S.; Maaß, B.; Rahim, M.; Frenzel, J.; Brunken, H.; Chu, Y. S.; Srivastava, V.; James, R. D.; Takeuchi, I.; Eggeler, G.; Ludwig, A., Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability, Adv. Funct. Mater., 20, 12, 1917-1923 (2010) · doi:10.1002/adfm.200902336
[57] Zhang, Z.: Special lattice parameters and the design of low hysteresis materials. Ph.D. thesis, University of Minnesota (2007)
[58] Zhang, Z.; James, R. D.; Müller, S., Energy barriers and hysteresis in martensitic phase transformations, Acta Mater., 57, 15, 4332-4352 (2009) · doi:10.1016/j.actamat.2009.05.034
[59] Zwicknagl, B., Microstructures in low-hysteresis shape memory alloys: scaling regimes and optimal needle shapes, Arch. Ration. Mech. Anal., 213, 2, 355-421 (2014) · Zbl 1310.74010 · doi:10.1007/s00205-014-0736-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.