×

Upscaling an extended heterogeneous Stefan problem from the pore-scale to the Darcy scale in permafrost. (English) Zbl 1537.35039

Summary: In this paper we upscale thermal models from the pore-scale to the Darcy scale for applications in permafrost. We incorporate thawing and freezing of water at the pore-scale and adapt rigorous homogenization theory from [A. Visintin, SIAM J. Math. Anal. 39, No. 3, 987–1017 (2007; Zbl 1152.35057)] to the original nonlinear multivalued relationship to derive the effective properties. To obtain agreement of the effective model with the known Darcy scale empirical models, we revisit and extend the pore-scale model to include the delicate microscale physics in small pores. We also propose a practical reduced model for the nonlinear effective conductivity. We illustrate with simulations.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35R35 Free boundary problems for PDEs
35K65 Degenerate parabolic equations
80A22 Stefan problems, phase changes, etc.
76S05 Flows in porous media; filtration; seepage

Citations:

Zbl 1152.35057

References:

[1] Andersland, O. B. and Ladanyi, B., Frozen Ground Engineering, 2nd ed., Wiley, ASCE, Hoboken, NJ, Reston, VA, 2004.
[2] Anderson, D. M. and Tice, A. R., Predicting Unfrozen Water Contents in Frozen Soils from Surface Area Measurements, Highway Research Record, 1972.
[3] Arbogast, T., Wheeler, M. F., and Zhang, N.-Y., A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33 (1996), pp. 1669-1687, doi:10.1137/S0036142994266728. · Zbl 0856.76033
[4] Bear, J. and Cheng, A., Modeling Groundwater Flow and Contaminant Transport, Vol. 23, Springer, Dordrecht, 2010, doi:10.1007/978-1-4020-6682-5. · Zbl 1195.76002
[5] Bigler, L., Computational Modeling of Phase Change at Different Scales with Applications, Ph.D. thesis, Oregon State University, Corvallis, Oregon, 2022.
[6] Bigler, L., Peszynska, M., and Vohra, N., Heterogeneous Stefan problem and permafrost models with P0-P0 finite elements and fully implicit monolithic solver, Electron. Res. Arch., 30 (2022), pp. 1477-1531, doi:10.3934/era.2022078. · Zbl 07510645
[7] Bringedal, C., Berre, I., Pop, I., and Radu, F., Upscaling of non-isothermal reactive porous media flow with changing porosity, Transp. Porous Media, 114 (2016), pp. 371-393.
[8] Brun, M. K., Berre, I., Nordbotten, J. M., and Radu, F. A., Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium, Transp. Porous Media, 124 (2018), pp. 137-158.
[9] Calvo-Jurado, C. and Parnell, W. J., Hashin-Shtrikman bounds on the effective thermal conductivity of a transversely isotropic two-phase composite material, J. Math. Chem., 53 (2015), pp. 828-843. · Zbl 1317.74078
[10] Chu, J., Engquist, B., Prodanović, M., and Tsai, R., A multiscale method coupling network and continuum models in porous media I: Steady-state single phase flow, Multiscale Model. Simul., 10 (2012), pp. 515-549, doi:10.1137/110836201. · Zbl 1428.76115
[11] Cortes, D. D., Martin, A. I., Yun, T. S., Francisca, F. M., Santamarina, J. C., and Ruppel, C., Thermal conductivity of hydrate-bearing sediments, J. Geophys. Res., 114 (2009).
[12] Costa, T. B., Kennedy, K., and Peszynska, M., Hybrid three-scale model for evolving pore-scale geometries, Comput. Geosci., 22 (2018), pp. 925-950, doi:10.1007/s10596-018-9733-9. · Zbl 1405.76050
[13] Damlamian, A., How to homogenize a nonlinear diffusion equation: Stefan’s problem, SIAM J. Math. Anal., 12 (1981), pp. 306-313, doi:10.1137/0512028. · Zbl 0468.35052
[14] De Kock, T., Boone, M. A., De Schryver, T., Van Stappen, J., Derluyn, H., Masschaele, B., De Schutter, G., and Cnudde, V., A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling, Environ. Sci. Technol., 49 (2015), pp. 2867-2874.
[15] Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour. Res., 27 (1991), pp. 699-708, doi:10.1029/91WR00107.
[16] Efendiev, Y., Multiscale Finite Element Methods: Theory and Applications, , Springer, New York, 2009. · Zbl 1163.65080
[17] Gibou, F., Fedkiw, R. P., Cheng, L.-T., and Kang, M., A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176 (2002), pp. 205-227. · Zbl 0996.65108
[18] Gupta, S., The Classical Stefan Problem: Basic Concepts, Modelling and Analysis, Elsevier Science, 2003. · Zbl 1064.80001
[19] Gärttner, S., Frolkovič, P., Knabner, P., and Ray, N., Efficiency and accuracy of micro-macro models for mineral dissolution, Water Resour. Res., 56 (2020).
[20] Harlan, R. L., Analysis of coupled heat-fluid transport in partially frozen soil, Water Resour. Res., 9 (1973), pp. 1314-1323.
[21] Hillel, D., Fundamentals of Soil Physics, Academic Press, 1980, doi:10.1016/C2009-0-03109-2.
[22] Hornung, U., Homogenization and Porous Media, Interdiscip. Appl. Math.6, Springer-Verlag, New York, 1997. · Zbl 0872.35002
[23] Jafarov, E. E., Marchenko, S. S., and Romanovsky, V. E., Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset, Cryosphere, 6 (2012), pp. 613-624, doi:10.5194/tc-6-613-2012.
[24] Jan, A., Coon, E. T., and Painter, S. L., Evaluating integrated surface/subsurface permafrost thermal hydrology models in ats (v0.88) against observations from a polygonal tundra site, Geosci. Model Dev., 13 (2020), pp. 2259-2276.
[25] Jiang, X. and Nochetto, R., A \(P^1-P^1\) finite element method for a phase relaxation model I: Quasiuniform mesh, SIAM J. Numer. Anal., 35 (1998), doi:10.1137/S0036142996297783. · Zbl 0972.65067
[26] Kelley, T. and Rulla, J., Solution of the discretized Stefan problem by Newton’s method, Nonlinear Anal., 14 (1990), pp. 851-872. · Zbl 0709.65107
[27] Kozlowski, T., A semi-empirical model for phase composition of water in clay-water systems, Cold Reg. Sci. Technol., 49 (2007), pp. 226-236.
[28] Kurylyk, B. L. and Watanabe, K., The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils, Adv. Water Resour., 60 (2013), pp. 160-177, doi:10.1016/j.advwatres.2013.07.016.
[29] Lake, L. W., Enhanced Oil Recovery, Prentice Hall, Englewood Cliffs, NJ, 1989.
[30] Ling, F. and Zhang, T., A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water, Cold Reg. Sci. Technol., 38 (2004), pp. 1-15, doi:10.1016/S0165-232X(03)00057-0.
[31] Lipton, R. and Vernescu, B., Composites with imperfect interface, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci., 452 (1996), pp. 329-358. · Zbl 0872.73033
[32] Little, T. and Showalter, R., The super-Stefan problem, Internat. J. Engrg. Sci., 33 (1995), pp. 67-75. · Zbl 0899.35125
[33] Liu, H., Maghoul, P., Shalaby, A., and Bahari, A., Thermo-hydro-mechanical modeling of frost heave using the theory of poroelasticity for frost-susceptible soils in double-barrel culvert sites, Transp. Geotech., 20 (2019), 100251, doi:10.1016/j.trgeo.2019.100251.
[34] Lovell, C. W., Temperature effects on phase composition and strength of partially-frozen soil, Highway Res. Board Bull., (1957), pp. 74-95, https://trid.trb.org/view/128123.
[35] Magenes, E., Nochetto, R. H., and Verdi, C., Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, ESAIM: M2AN, 21 (1987), pp. 655-678, doi:10.1051/m2an/1987210406551. · Zbl 0635.65123
[36] Mei, C. C. and Vernescu, B., Homogenization Methods for Multiscale Mechanics, World Scientific, Singapore, 2010, https://cds.cern.ch/record/1413771. · Zbl 1210.74005
[37] Meyer, G. H., Multidimensional Stefan problems, SIAM J. Numer. Anal., 10 (1973), pp. 522-538, doi:10.1137/0710047. · Zbl 0256.65054
[38] Michalowski, R. L., A constitutive model of saturated soils for frost heave simulations, Cold Reg. Sci. Technol., 22 (1993), pp. 47-63, doi:10.1016/0165-232X(93)90045-A.
[39] Nicolsky, D., Romanovsky, V., and Panteleev, G., Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost, Cold Reg. Sci. Technol., 55 (2009), pp. 120-129, doi:10.1016/j.coldregions.2008.03.003.
[40] Nicolsky, D., Romanovsky, V., and Tipenko, G., Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems, Cryosphere, 1 (2007), pp. 41-58, doi:10.5194/tc-1-41-2007.
[41] Nochetto, R. H. and Verdi, C., The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9 (1988), pp. 1177-1192, doi:10.1080/01630568808816279. · Zbl 0629.35116
[42] Osterkamp, T. E., Freezing and thawing of soils and permafrost containing unfrozen water or brine, Water Resour. Res., 23 (1987), pp. 2279-2285.
[43] Papanicolau, G., Bensoussan, A., and Lions, J. L., Asymptotic Analysis for Periodic Structures, North Holland, 1978. · Zbl 0404.35001
[44] Peszynska, M. and Showalter, R., Approximation of scalar conservation law with hysteresis, SIAM J. Numer. Anal., 58 (2020), pp. 962-987, doi:10.1137/18M1197679.
[45] Peszynska, M., Showalter, R., and Yi, S.-Y., Flow and transport when scales are not separated: Numerical analysis and simulations of micro- and macro-models, Int. J. Numer. Anal. Model., 12 (2015), pp. 476-515, http://www.math.ualberta.ca/ijnam/Volume-12-2015/No-3-15/2015-03-04.pdf. · Zbl 1499.74085
[46] Peszynska, M. and Showalter, R. E., Approximation of hysteresis functional, J. Comput. Appl. Math., 389 (2021), 113356. · Zbl 1459.65155
[47] Peszynska, M. and Trykozko, A., Convergence and stability in upscaling of flow with inertia from porescale to mesoscale, Int. J. Multiscale Comput. Eng., 9 (2011), pp. 215-229, doi:10.1615/IntJMultCompEng.v9.i2.60.
[48] Peszynska, M. and Trykozko, A., Pore-to-core simulations of flow with large velocities using continuum models and imaging data, Comput. Geosci., 17 (2013), pp. 623-645, doi:10.1007/s10596-013-9344-4. · Zbl 1387.76087
[49] Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., and Wildenschild, D., Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling, Adv. Water Resour., 95 (2016), pp. 288-301.
[50] Peszynska, M., Umhoefer, J., and Shin, C., Reduced model for properties of multiscale porous media with changing geometry, Computation, 9 (2021), 28, doi:10.3390/computation9030028.
[51] Pop, I., Radu, F., and Knabner, P., Mixed finite elements for the Richards’ equation: Linearization procedure, J. Comput. Appl. Math., 168 (2004), pp. 365-373, doi:10.1016/j.cam.2003.04.008. · Zbl 1057.76034
[52] Quarteroni, A., Reduced Basis Methods for Partial Differential Equations: An Introduction, Springer, Cham, 2016. · Zbl 1337.65113
[53] Radu, F., Pop, I., and Knabner, P., Error estimates for a mixed finite element discretization of some degenerate parabolic equations, Numer. Math., 109 (2008), pp. 285-311, doi:10.1007/s00211-008-0139-9. · Zbl 1141.65071
[54] Radu, F., Pop, I. S., and Knabner, P., Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J. Numer. Anal., 42 (2004), pp. 1452-1478, doi:10.1137/S0036142902405229. · Zbl 1159.76352
[55] Ray, N., Rupp, A., Schulz, R., and Knabner, P., Old and new approaches predicting the diffusion in porous media, Transp. Porous Media, 124 (2018), pp. 803-824.
[56] Rempel, A. W. and Alst, L. J. V., Potential gradients produced by pore-space heterogeneities: Application to isothermal frost damage and submarine hydrate anomalies, in Proceedings of the Fifth Biot Conference on Poromechanics, , 2013, pp. 813-822, doi:10.1061/9780784412992.098.
[57] Ren, J., Vanapalli, S., and Han, Z., Soil freezing process and different expressions for the soil-freezing characteristic curve, Sci. Cold Arid Regions, 9 (2017), pp. 221-228, http://www.scar.ac.cn/EN/10.3724/SP.J.1226.2017.00221.
[58] Rogers, J. C., Berger, A. E., and Ciment, M., The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal., 16 (1979), pp. 563-587, doi:10.1137/0716043. · Zbl 0418.65051
[59] Rooney, E. C., Bailey, V. L., Patel, K. F., Dragila, M., Battu, A. K., Buchko, A. C., Gallo, A. C., Hatten, J., Possinger, A. R., Qafoku, O., Reno, L., SanClements, M., Varga, T., and Lybrand, R. A., Soil pore network response to freeze-thaw cycles in permafrost aggregates, Geoderma, 411 (2022), 115674, doi:10.1016/j.geoderma.2021.115674.
[60] Roubicek, T., The Stefan problem in heterogeneous media, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), pp. 481-501. · Zbl 0706.35139
[61] Rulla, J. and Walkington, N. J., Optimal rates of convergence for degenerate parabolic problems in two dimensions, SIAM J. Numer. Anal., 33 (1996), pp. 56-67, doi:10.1137/0733004. · Zbl 0856.65102
[62] Sanchez-Palencia, E. E., Non-homogenous Media and Vibration Theory, , Springer-Verlag, Berlin, 1980. · Zbl 0432.70002
[63] Schneid, E., Knabner, P., and Radu, F., A priori error estimates for a mixed finite element discretization of the Richards’ equation, Numer. Math., 98 (2004), pp. 353-370. · Zbl 1075.76042
[64] Shin, C., Alhammali, A., Bigler, L., Vohra, N., and Peszynska, M., Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species, Math. Biosci. Eng., 18 (2021), pp. 2097-2149, doi:10.3934/mbe.2021108. · Zbl 1471.92219
[65] Showalter, R. E., Mathematical formulation of the Stefan problem, Internat. J. Engrg. Sci., 20 (1982), pp. 909-912, doi:10.1016/0020-7225(82)90109-4. · Zbl 0506.76103
[66] Showalter, R. E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr.49, American Mathematical Society, Providence, RI, 1997, doi:10.1090/surv/049. · Zbl 0870.35004
[67] Stuurop, J. C., van der Zee, S. E. A. T. M., Voss, C. I., and French, H. K., Simulating water and heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach, Adv. Water Resour., 149 (2021), 103846, doi:10.1016/j.advwatres.2021.103846.
[68] Tarnawski, V. R. and Wagner, B., Modeling the thermal conductivity of frozen soils, Cold Reg. Sci. Technol., 22 (1993), pp. 19-31.
[69] Tartar, L., Incompressible Fluid Flow in a Porous Medium Convergence of the Homogenization Process, Appendix Lect. Notes Phys.127, Springer-Verlag, Berlin, 1980.
[70] Trykozko, A., Peszynska, M., and Dohnalik, M., Modeling non-Darcy flows in realistic porescale proppant geometries, Comput. Geotech., 71 (2015), pp. 352-360, doi:10.1016/j.compgeo.2015.08.011.
[71] Verdi, C. and Visintin, A., Error estimates for a semi-explicit numerical scheme for Stefan-type problems, Numer. Math., 52 (1987/88), pp. 165-186, http://eudml.org/doc/133231. · Zbl 0617.65125
[72] Visintin, A., Models of Phase Transitions, Progr. Nonlinear Differential Equations Appl. 28, Birkhäuser Boston, Boston, MA, 1996, doi:10.1007/978-1-4612-4078-5. · Zbl 0882.35004
[73] Visintin, A., Homogenization of a doubly nonlinear Stefan-type problem, SIAM J. Math. Anal., 39 (2007), pp. 987-1017, doi:10.1137/060676647. · Zbl 1152.35057
[74] Vohra, N. and Peszynska, M., Robust conservative scheme and nonlinear solver for phase transitions in heterogeneous permafrost, J. Comput. Appl. Math., 442 (2024), 115719, doi:10.1016/j.cam.2023.115719. · Zbl 07834847
[75] Wheeler, J. A., Simulation of heat transfer from a warm pipeline buried in permafrost, in AICHE paper 27b Presented at 74th National Meeting of American Institute of Chemical Engineers, , 1973, pp. 267-284.
[76] Woodward, C. S. and Dawson, C. N., Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37 (2000), pp. 701-724, doi:10.1137/S0036142996311040. · Zbl 0948.65096
[77] Zhang, H., Zhang, J., Zhang, Z., Chen, J., and You, Y., A consolidation model for estimating the settlement of warm permafrost, Comput. Geotech., 76 (2016), pp. 43-50, doi:10.1016/j.compgeo.2016.02.013.
[78] Zhang, Y. and Michalowski, R., Thermal-hydro-mechanical analysis of frost heave and thaw settlement, J. Geotech. Geoenvironmental Eng., 141 (2015), 04015027, doi:10.1061/(ASCE)GT.1943-5606.0001305.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.