×

Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations. (English) Zbl 1456.65105

Summary: We propose a finite element scheme for numerical approximation of degenerate parabolic problems in the form of a nonlinear anisotropic Fokker-Planck equation. The scheme is energy-stable, only involves physically motivated quantities in its definition, and is able to handle general unstructured grids. Its convergence is rigorously proven thanks to compactness arguments, under very general assumptions. Although the scheme is based on Lagrange finite elements of degree 1, it is locally conservative after a local postprocess giving rise to an equilibrated flux. This also allows to derive a guaranteed a posteriori error estimate for the approximate solution. Numerical experiments are presented in order to give evidence of a very good behavior of the proposed scheme in various situations involving strong anisotropy and drift terms.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K65 Degenerate parabolic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q84 Fokker-Planck equations

Software:

FreeFem++

References:

[1] Ait Hammou Oulhaj, Ahmed; Canc\`es, Cl\'{e}ment; Chainais-Hillairet, Claire, Numerical analysis of a nonlinearly stable and positive control volume finite element scheme for Richards equation with anisotropy, ESAIM Math. Model. Numer. Anal., 52, 4, 1533-1567 (2018) · Zbl 1407.65160 · doi:10.1051/m2an/2017012
[2] Oulhaj, Ahmed Ait Hammou; Canc\`es, Cl\'{e}ment; Chainais-Hillairet, Claire; Lauren\c{c}ot, Philippe, Large time behavior of a two phase extension of the porous medium equation, Interfaces Free Bound., 21, 2, 199-229 (2019) · Zbl 1423.35225 · doi:10.4171/IFB/421
[3] Andreianov, Boris; Canc\`es, Cl\'{e}ment; Moussa, Ayman, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs, J. Funct. Anal., 273, 12, 3633-3670 (2017) · Zbl 1387.46051 · doi:10.1016/j.jfa.2017.08.010
[4] Baughman, Lisa A.; Walkington, Noel J., Co-volume methods for degenerate parabolic problems, Numer. Math., 64, 1, 45-67 (1993) · Zbl 0797.65075 · doi:10.1007/BF01388680
[5] Bear, J.; Bachmat, Y., Introduction to Modeling of Transport Phenomena in Porous Media, 4 (1990), Kluwer {A}cademic {P}ublishers, {D}ordrecht, {T}he {N}etherlands · Zbl 0743.76003
[6] Bessemoulin-Chatard, Marianne; Chainais-Hillairet, Claire, Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems, J. Numer. Math., 25, 3, 147-168 (2017) · Zbl 1376.82105 · doi:10.1515/jnma-2016-0007
[7] Bessemoulin-Chatard, M.; Chainais-Hillairet, C.; Vignal, M.-H., Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit, SIAM J. Numer. Anal., 52, 4, 1666-1691 (2014) · Zbl 1305.65191 · doi:10.1137/130913432
[8] Braess, Dietrich; Sch\"{o}berl, Joachim, Equilibrated residual error estimator for edge elements, Math. Comp., 77, 262, 651-672 (2008) · Zbl 1135.65041 · doi:10.1090/S0025-5718-07-02080-7
[9] Brenner, Konstantin; Canc\`es, Cl\'{e}ment; Hilhorst, Danielle, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, Comput. Geosci., 17, 3, 573-597 (2013) · Zbl 1392.76035 · doi:10.1007/s10596-013-9345-3
[10] Brenner, K.; Masson, R., Convergence of a vertex centered discretization of two-phase Darcy flows on general meshes, Int. J. Finite Vol., 10, 37 pp. (2013) · Zbl 1482.65203
[11] Canc\`es, C., Energy stable numerical methods for porous media flow type problems, Oil & Gas Science and Technology-Rev. IFPEN, 73, 1-18 (2018)
[12] Finite Volumes for Complex Applications VIII-Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings in Mathematics & Statistics 200, xiii+559 pp. (2017), Springer, Cham · Zbl 1371.65001 · doi:10.1007/978-3-319-57394-6
[13] Canc\`es, Cl\'{e}ment; Chainais-Hillairet, Claire; Krell, Stella, Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations, Comput. Methods Appl. Math., 18, 3, 407-432 (2018) · Zbl 1401.65096 · doi:10.1515/cmam-2017-0043
[14] Canc\`es, Cl\'{e}ment; Guichard, Cindy, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations, Math. Comp., 85, 298, 549-580 (2016) · Zbl 1332.65128 · doi:10.1090/mcom/2997
[15] Canc\`es, Cl\'{e}ment; Guichard, Cindy, Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure, Found. Comput. Math., 17, 6, 1525-1584 (2017) · Zbl 1382.65267 · doi:10.1007/s10208-016-9328-6
[16] Canc\`es, Cl\'{e}ment; Pop, Iuliu Sorin; Vohral\'{\i}k, Martin, An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp., 83, 285, 153-188 (2014) · Zbl 1430.76369 · doi:10.1090/S0025-5718-2013-02723-8
[17] Chainais-Hillairet, C., Sch\'ema volumes finis pour des probl\`{e}mes hyperboliques : convergence et estimations d’erreur (1998)
[18] Chainais-Hillairet, Claire; Filbet, Francis, Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model, IMA J. Numer. Anal., 27, 4, 689-716 (2007) · Zbl 1133.65060 · doi:10.1093/imanum/drl045
[19] Chatard, Marianne, Asymptotic Behavior of the Scharfetter-Gummel Scheme for the Drift-Diffusion Model. Finite volumes for complex applications VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math. 4, 235-243 (2011), Springer, Heidelberg · Zbl 1246.82097 · doi:10.1007/978-3-642-20671-9\_25
[20] Chavent, G.; Jaffr\'e, J., Mathematical Models and Finite Elements for Reservoir Simulation, 17 (1986), North-Holland: Amsterdam:North-Holland · Zbl 0603.76101
[21] Ciarlet, Philippe G., The Finite Element Method for Elliptic Problems, xix+530 pp. (1978), Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford · Zbl 0999.65129
[22] Destuynder, Philippe; M\'{e}tivet, Brigitte, Explicit error bounds in a conforming finite element method, Math. Comp., 68, 228, 1379-1396 (1999) · Zbl 0929.65095 · doi:10.1090/S0025-5718-99-01093-5
[23] Di Pietro, Daniele A.; Vohral\'{\i}k, Martin; Yousef, Soleiman, Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, Math. Comp., 84, 291, 153-186 (2015) · Zbl 1307.65123 · doi:10.1090/S0025-5718-2014-02854-8
[24] Dolej\v{s}\'{\i}, V\'{\i}t; Ern, Alexandre; Vohral\'{\i}k, Martin, A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, SIAM J. Numer. Anal., 51, 2, 773-793 (2013) · Zbl 1278.65138 · doi:10.1137/110859282
[25] Ern, A.; Guermond, J. L., Theory and Practice of Finite Elements, Applied Mathematical Series 159 (2004), Springer: New York:Springer · Zbl 1059.65103
[26] Ern, Alexandre; Smears, Iain; Vohral\'{\i}k, Martin, Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal., 55, 6, 2811-2834 (2017) · Zbl 1378.65165 · doi:10.1137/16M1097626
[27] Ern, Alexandre; Vohral\'{\i}k, Martin, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput., 35, 4, A1761-A1791 (2013) · Zbl 1362.65056 · doi:10.1137/120896918
[28] Ern, Alexandre; Vohral\'{\i}k, Martin, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53, 2, 1058-1081 (2015) · Zbl 1312.76026 · doi:10.1137/130950100
[29] Eymard, Robert; Gallou\"{e}t, Thierry; Herbin, Rapha\`ele, Finite Volume Methods. Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, 713-1020 (2000), North-Holland, Amsterdam · Zbl 0981.65095 · doi:10.1086/phos.67.4.188705
[30] Eymard, Robert; Guichard, Cindy; Herbin, Raphaele; Masson, Roland, Vertex-centred discretization of multiphase compositional Darcy flows on general meshes, Comput. Geosci., 16, 4, 987-1005 (2012) · Zbl 1357.76037 · doi:10.1007/s10596-012-9299-x
[31] Eymard, Robert; Guichard, Cindy; Herbin, Rapha\`ele; Masson, Roland, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation, ZAMM Z. Angew. Math. Mech., 94, 7-8, 560-585 (2014) · Zbl 1297.76159 · doi:10.1002/zamm.201200206
[32] Eymard, Robert; Gutnic, Micha\"{e}l; Hilhorst, Danielle, The finite volume method for Richards equation, Comput. Geosci., 3, 3-4, 259-294 (2000) (1999) · Zbl 0953.76060 · doi:10.1023/A:1011547513583
[33] Eymard, Robert; Herbin, Rapha\`ele; Michel, Anthony, Mathematical study of a petroleum-engineering scheme, M2AN Math. Model. Numer. Anal., 37, 6, 937-972 (2003) · Zbl 1118.76355 · doi:10.1051/m2an:2003062
[34] Eymard, Robert; Hilhorst, Danielle; Vohral\'{\i}k, Martin, A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems, Numer. Math., 105, 1, 73-131 (2006) · Zbl 1108.65099 · doi:10.1007/s00211-006-0036-z
[35] Fiebach, Andr\'{e}; Glitzky, Annegret; Linke, Alexander, Uniform global bounds for solutions of an implicit Voronoi finite volume method for reaction-diffusion problems, Numer. Math., 128, 1, 31-72 (2014) · Zbl 1306.65249 · doi:10.1007/s00211-014-0604-6
[36] Fiebach, Andr\'{e}; Glitzky, Annegret; Linke, Alexander, Convergence of an implicit Voronoi finite volume method for reaction-diffusion problems, Numer. Methods Partial Differential Equations, 32, 1, 141-174 (2016) · Zbl 1339.65145 · doi:10.1002/num.21990
[37] Filbet, Francis; Herda, Maxime, A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure, Numer. Math., 137, 3, 535-577 (2017) · Zbl 1381.65072 · doi:10.1007/s00211-017-0885-7
[38] Forsyth, Peter A., A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Statist. Comput., 12, 5, 1029-1057 (1991) · Zbl 0725.76087 · doi:10.1137/0912055
[39] Hecht, F., New development in freefem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090 · doi:10.1515/jnum-2012-0013
[40] Herbin, Rapha\`ele, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh, Numer. Methods Partial Differential Equations, 11, 2, 165-173 (1995) · Zbl 0822.65085 · doi:10.1002/num.1690110205
[41] Jerome, J. W.; Rose, M. E., Error estimates for the multidimensional two-phase {S}tefan problem, Math. Comp., 39, 160, 377-414 (1982) · Zbl 0505.65060 · doi:10.2307/2007320
[42] Meirmanov, Anvarbek M., The Stefan Problem, De Gruyter Expositions in Mathematics 3, x+245 pp. (1992), Walter de Gruyter & Co., Berlin · Zbl 0751.35052 · doi:10.1515/9783110846720.245
[43] Michel, Anthony, A finite volume scheme for two-phase immiscible flow in porous media, SIAM J. Numer. Anal., 41, 4, 1301-1317 (2003) · Zbl 1049.35018 · doi:10.1137/S0036142900382739
[44] Moussa, A., Some variants of the classical Aubin-Lions lemma, J. Evol. Equ., 16, 1, 65-93 (2016) · Zbl 1376.46015 · doi:10.1007/s00028-015-0293-3
[45] Nochetto, R. H.; Paolini, M.; Verdi, C., An adaptive finite element method for two-phase {S}tefan problems in two space dimensions. {I}. {S}tability and error estimates, Math. Comp., 57, 195, 73-108, S1- S11 (1991) · Zbl 0733.65087 · doi:10.2307/2938664
[46] Nochetto, R. H.; Schmidt, A.; Verdi, C., A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp., 69, 229, 1-24 (2000) · Zbl 0942.65111 · doi:10.1090/S0025-5718-99-01097-2
[47] Otto, Felix, \(L^1\)-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations, 131, 1, 20-38 (1996) · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[48] Perthame, Beno\^{\i}t, Parabolic Equations in Biology, Lecture Notes on Mathematical Modelling in the Life Sciences, xii+199 pp. (2015), Springer, Cham · Zbl 1333.35001 · doi:10.1007/978-3-319-19500-1
[49] Rulla, Jim; Walkington, Noel J., Optimal rates of convergence for degenerate parabolic problems in two dimensions, SIAM J. Numer. Anal., 33, 1, 56-67 (1996) · Zbl 0856.65102 · doi:10.1137/0733004
[50] V\'{a}zquez, Juan Luis, The Porous Medium Equation, Oxford Mathematical Monographs, xxii+624 pp. (2007), The Clarendon Press, Oxford University Press, Oxford · Zbl 1107.35003
[51] Visintin, Augusto, Models of Phase Transitions, Progress in Nonlinear Differential Equations and their Applications 28, x+322 pp. (1996), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0882.35004 · doi:10.1007/978-1-4612-4078-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.