×

Numerical analysis of a nonlinear free-energy diminishing discrete duality finite volume scheme for convection diffusion equations. (English) Zbl 1401.65096

Summary: We propose a nonlinear Discrete Duality Finite Volume scheme to approximate the solutions of drift diffusion equations. The scheme is built to preserve at the discrete level even on severely distorted meshes the energy/energy dissipation relation. This relation is of paramount importance to capture the long-time behavior of the problem in an accurate way. To enforce it, the linear convection diffusion equation is rewritten in a nonlinear form before being discretized. We establish the existence of positive solutions to the scheme. Based on compactness arguments, the convergence of the approximate solution towards a weak solution is established. Finally, we provide numerical evidences of the good behavior of the scheme when the discretization parameters tend to 0 and when time goes to infinity.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations

References:

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lecture Notes in Math., Birkhäuser, Basel, 2008. · Zbl 1145.35001
[2] B. Andreianov, M. Bendahmane and K. H. Karlsen, Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, J. Hyperbolic Differ. Equ. 7 (2010), no. 1, 1-67. · Zbl 1207.35020
[3] B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differential Equations 23 (2007), no. 1, 145-195. · Zbl 1111.65101
[4] B. Andreianov, C. Cancès and A. Moussa, A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs, J. Funct. Anal. 273 (2017), no. 12, 3633-3670. · Zbl 1387.46051
[5] A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research, Monatsh. Math. 142 (2004), no. 1-2, 35-43. · Zbl 1063.35109
[6] A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations 26 (2001), no. 1-2, 43-100. · Zbl 0982.35113
[7] M. Bessemoulin-Chatard and C. Chainais-Hillairet, Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems, J. Numer. Math. 25 (2017), no. 3, 147-168. · Zbl 1376.82105
[8] M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal. 35 (2015), no. 3, 1125-1149. · Zbl 1326.65145
[9] D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations 210 (2005), no. 2, 383-428. · Zbl 1075.35112
[10] F. Bolley, I. Gentil and A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations, J. Funct. Anal. 263 (2012), no. 8, 2430-2457. · Zbl 1253.35183
[11] F. Bolley, I. Gentil and A. Guillin, Uniform convergence to equilibrium for granular media, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 429-445. · Zbl 1264.35040
[12] C. Cancès, C. Chainais-Hillairet and S. Krell, A nonlinear discrete duality finite volume scheme for convection-diffusion equations, Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Springer Proc. Math. Stat. 199, Springer, Cham (2017), 439-447. · Zbl 1391.76390
[13] C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations, Math. Comp. 85 (2016), no. 298, 549-580. · Zbl 1332.65128
[14] C. Cancès and C. Guichard, Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure, Found. Comput. Math. (2016), 10.1007/s10208-016-9328-6. · Zbl 1382.65267 · doi:10.1007/s10208-016-9328-6
[15] J. A. Carrillo and G. Toscani, Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations, Math. Methods Appl. Sci. 21 (1998), no. 13, 1269-1286. · Zbl 0922.35131
[16] J. A. Carrillo and G. Toscani, Asymptotic L^{1}-decay of solutions of the porous medium equation to self-similarity, Indiana Univ. Math. J. 49 (2000), no. 1, 113-142. · Zbl 0963.35098
[17] C. Chainais-Hillairet, A. Jüngel and S. Schuchnigg, Entropy-dissipative discretization of nonlinear diffusion equations and discrete Beckner inequalities, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 1, 135-162. · Zbl 1341.65034
[18] C. Chainais-Hillairet, S. Krell and A. Mouton, Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media, Numer. Methods Partial Differential Equations 31 (2015), no. 3, 723-760. · Zbl 1325.76128
[19] M. Chatard, Asymptotic behavior of the Scharfetter-Gummel scheme for the drift-diffusion model, Finite Volumes for Complex Applications VI. Problems & Perspectives. Vols. 1-2, Springer Proc. Math. 4, Springer, Heidelberg (2011), 235-243. · Zbl 1246.82097
[20] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem, M2AN Math. Model. Numer. Anal. 33 (1999), no. 3, 493-516. · Zbl 0937.65116
[21] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. · Zbl 0559.47040
[22] C. Dellacherie and P.-A. Meyer, Probabilities and Potential, North-Holland Math. Stud. 29, North-Holland Publishing, Amsterdam, 1978. · Zbl 0494.60001
[23] L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl. 319 (2006), no. 1, 157-176. · Zbl 1096.35018
[24] L. Desvillettes and K. Fellner, Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion, Math. Methods Appl. Sci. 38 (2015), no. 16, 3432-3443. · Zbl 1335.35115
[25] K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal. 39 (2005), no. 6, 1203-1249. · Zbl 1086.65108
[26] J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations, Numer. Math. 132 (2016), no. 4, 721-766. · Zbl 1342.65180
[27] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The gradient discretisation method, preprint (2016), . · Zbl 1372.65256
[28] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes, IMA J. Numer. Anal. 18 (1998), no. 4, 563-594. · Zbl 0973.65078
[29] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis. Vol. VII, North-Holland, Amsterdam (2000), 713-1020. · Zbl 0981.65095
[30] F. Filbet, An asymptotically stable scheme for diffusive coagulation-fragmentation models, Commun. Math. Sci. 6 (2008), no. 2, 257-280. · Zbl 1144.82081
[31] H. Gajewski and K. Gärtner, On the discretization of van Roosbroeck’s equations with magnetic field, ZAMM Z. Angew. Math. Mech. 76 (1996), no. 5, 247-264. · Zbl 0873.35004
[32] H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl. 113 (1986), no. 1, 12-35. · Zbl 0642.35038
[33] H. Gajewski and K. Gröger, Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics, Math. Nachr. 140 (1989), 7-36. · Zbl 0681.35081
[34] T. Gallouët, Some discrete functional analysis tools, Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Springer Proc. Math. Stat. 199, Springer, Cham (2017), 29-41. · Zbl 1391.76408
[35] A. Glitzky, Exponential decay of the free energy for discretized electro-reaction-diffusion systems, Nonlinearity 21 (2008), no. 9, 1989-2009. · Zbl 1149.35316
[36] A. Glitzky, Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems, Math. Nachr. 284 (2011), no. 17-18, 2159-2174. · Zbl 1235.35037
[37] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1-17. · Zbl 0915.35120
[38] A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations, Springer Briefs Math., Springer, Cham, 2016. · Zbl 1361.35002
[39] A. Jüngel and S. Schuchnigg, Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations, Commun. Math. Sci. 15 (2017), no. 1, 27-53. · Zbl 1375.65073
[40] J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. Éc. Norm. Supér (3) 51 (1934), 45-78. · JFM 60.0322.02
[41] F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101-174. · Zbl 0984.35089
[42] F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, Progr. Nonlinear Differential Equations Appl. 87, Birkhäuser, Cham, 2015. · Zbl 1401.49002
[43] D. Scharfetter and H. Gummel, Large signal analysis of a silicon Read diode, IEEE Trans. Elec. Dev. 16 (1969), 64-77.
[44] G. Toscani and C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Stat. Phys. 98 (2000), no. 5-6, 1279-1309. · Zbl 1034.82032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.