×

A critical comparison of Lagrangian methods for coherent structure detection. (English) Zbl 1465.76096

Summary: We review and test twelve different approaches to the detection of finite-time coherent material structures in two-dimensional, temporally aperiodic flows. We consider both mathematical methods and diagnostic scalar fields, comparing their performance on three benchmark examples: the quasiperiodically forced Bickley jet, a two-dimensional turbulence simulation, and an observational wind velocity field from Jupiter’s atmosphere. A close inspection of the results reveals that the various methods often produce very different predictions for coherent structures, once they are evaluated beyond heuristic visual assessment. As we find by passive advection of the coherent set candidates, false positives and negatives can be produced even by some of the mathematically justified methods due to the ineffectiveness of their underlying coherence principles in certain flow configurations. We summarize the inferred strengths and weaknesses of each method, and make general recommendations for minimal self-consistency requirements that any Lagrangian coherence detection technique should satisfy.{
©2017 American Institute of Physics}

MSC:

76R99 Diffusion and convection
76M99 Basic methods in fluid mechanics
76F25 Turbulent transport, mixing
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

References:

[1] Beron-Vera, F. J.; Brown, M. G.; Olascoaga, M. J.; Rypina, I. I.; Koçak, H.; Udovydchenkov, I. A., Zonal jets as transport barriers in planetary atmospheres, J. Atmos. Sci., 65, 3316-3326 (2008) · doi:10.1175/2008JAS2579.1
[2] Haller, G.; Beron-Vera, F. J., Coherent Lagrangian vortices: The black holes of turbulence, J. Fluid Mech., 731, R4 (2013) · Zbl 1294.76188 · doi:10.1017/jfm.2013.391
[3] Harrison, C. S.; Siegel, D. A.; Mitarai, S., Filamentation and eddy-eddy interactions in marine larval accumulation and transport, Mar. Ecol. Prog. Ser., 472, 27-44 (2013) · doi:10.3354/meps10061
[4] Dong, C.; McWilliams, J. C.; Liu, Y.; Chen, D., Global heat and salt transports by eddy movement, Nat. Commun., 5, 3294 (2014)
[5] Dabiri, J. O.; Gharib, M.; Colin, S. P.; Costello, J. H., Vortex motion in the ocean: In situ visualization of jellyfish swimming and feeding flows, Phys. Fluids, 17, 091108 (2005) · Zbl 1187.76111 · doi:10.1063/1.1942521
[6] Peng, J.; Dabiri, J. O., An overview of a Lagrangian method for analysis of animal wake dynamics, J. Exp. Biol., 211, 280-287 (2007)
[7] Huhn, F.; van Rees, W. M.; Gazzola, M.; Rossinelli, D.; Haller, G.; Koumoutsakos, P., Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices, Chaos, 25, 087405 (2015) · doi:10.1063/1.4919784
[8] Lipinski, D.; Cardwell, B.; Mohseni, K., A Lagrangian analysis of a two-dimensional airfoil with vortex shedding, J. Phys. A: Math. Theor., 41, 344011 (2008) · Zbl 1190.76143 · doi:10.1088/1751-8113/41/34/344011
[9] Green, M. A.; Rowley, C. W.; Smits, A. J., Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows, Chaos, 20, 017510 (2010) · doi:10.1063/1.3270045
[10] Le, T. B.; Sotiropoulos, F., Fluidstructure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle, J. Comput. Phys., 244, 41-62 (2013) · Zbl 1377.76045
[11] Peacock, T.; Dabiri, J., Introduction to focus issue: Lagrangian coherent structures, Chaos, 20, 017501 (2010) · doi:10.1063/1.3278173
[12] Peacock, T.; Haller, G., Lagrangian coherent structures: The hidden skeleton of fluid flows, Phys. Today, 66, 2, 41-47 (2013) · doi:10.1063/PT.3.1886
[13] Peacock, T.; Froyland, G.; Haller, G., Introduction to focus issue: Objective detection of coherent structures, Chaos, 25, 087201 (2015) · doi:10.1063/1.4928894
[14] Shadden, S. C., Lagrangian coherent structures, Transport and Mixing in Laminar Flows, 59-89 (2011) · Zbl 1356.76334
[15] Haller, G., Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47, 137-162 (2015) · doi:10.1146/annurev-fluid-010313-141322
[16] Allshouse, M. R.; Peacock, T., Lagrangian based methods for coherent structure detection, Chaos, 25, 097617 (2015) · doi:10.1063/1.4922968
[17] Beron-Vera, F. J.; Wang, Y.; Olascoaga, M. J.; Goni, G. J.; Haller, G., Objective detection of oceanic eddies and the Agulhas leakage, J. Phys. Oceanogr., 43, 1426-1438 (2013) · doi:10.1175/JPO-D-12-0171.1
[18] Haller, G.; Hadjighasem, A.; Farazmand, M.; Huhn, F., Defining coherent vortices objectively from the vorticity, J. Fluid Mech., 795, 136-173 (2016) · Zbl 1359.76096 · doi:10.1017/jfm.2016.151
[19] Ma, T.; Bollt, E. M., Shape coherence and finite-time curvature evolution, Int. J. Bifurcation Chaos, 25, 1550076 (2015) · Zbl 1317.37034 · doi:10.1142/S0218127415500765
[20] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics (2004) · Zbl 0779.73004
[21] Lugt, H. J., The dilemma of defining a vortex, Recent Developments in Theoretical and Experimental Fluid Mechanics: Compressible and Incompressible Flows, 309-321 (1979)
[22] Haller, G.; Yuan, G., Lagrangian coherent structures and mixing in two-dimensional turbulence, Phys. D (Amsterdam, Neth.), 147, 352-370 (2000) · Zbl 0970.76043 · doi:10.1016/S0167-2789(00)00142-1
[23] Haller, G., Lagrangian coherent structures from approximate velocity data, Phys. Fluids, 14, 1851-1861 (2002) · Zbl 1185.76161 · doi:10.1063/1.1477449
[24] Gurtin, M. E., An Introduction to Continuum Mechanics, 158 (1982)
[25] Beron-Vera, F. J.; Olascoaga, M. J.; Brown, M. G.; Koçak, H.; Rypina, I. I., Invariant-tori-like Lagrangian coherent structures in geophysical flows, Chaos, 20, 017514 (2010) · Zbl 1311.37042 · doi:10.1063/1.3271342
[26] Beron-Vera, F. J.; Olascoaga, M. J.; Brown, M. G.; Koçak, H., Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere, J. Atmos. Sci., 69, 753-767 (2012) · doi:10.1175/JAS-D-11-084.1
[27] Farazmand, M.; Blazevski, D.; Haller, G., Shearless transport barriers in unsteady two-dimensional flows and maps, Phys. D (Amsterdam, Neth.), 278-279, 44-57 (2014) · Zbl 1349.76097 · doi:10.1016/j.physd.2014.03.008
[28] Artale, V.; Boffetta, G.; Celani, A.; Cencini, M.; Vulpiani, A., Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient, Phys. Fluids, 9, 3162-3171 (1997) · Zbl 1185.76736 · doi:10.1063/1.869433
[29] Aurell, E.; Boffetta, G.; Crisanti, A.; Paladin, G.; Vulpiani, A., Predictability in the large: An extension of the concept of Lyapunov exponent, J. Phys. A: Math. Gen., 30, 1-26 (1997) · Zbl 0930.76037 · doi:10.1088/0305-4470/30/1/003
[30] Joseph, B.; Legras, B., Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex, J. Atmos. Sci., 59, 1198-1212 (2002) · doi:10.1175/1520-0469(2002)059<1198:RBKBSA>2.0.CO;2
[31] d’Ovidio, F.; Fernández, V.; Hernández-García, E.; López, C., Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 31, L17203 (2004) · doi:10.1029/2004GL020328
[32] Bettencourt, J. H.; López, C.; Hernández-García, E., Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent, J. Phys. A: Math. Theor., 46, 254022 (2013) · Zbl 1351.37117 · doi:10.1088/1751-8113/46/25/254022
[33] Karrasch, D.; Haller, G., Do finite-size Lyapunov exponents detect coherent structures?, Chaos, 23, 043126 (2013) · Zbl 1331.37023 · doi:10.1063/1.4837075
[34] Mezić, I.; Loire, S.; Fonoberov, V. A.; Hogan, P., A new mixing diagnostic and gulf oil spill movement, Science, 330, 486-489 (2010) · doi:10.1126/science.1194607
[35] Liu, I. S., On the transformation property of the deformation gradient under a change of frame, J. Elasticity, 71, 73-80 (2003) · Zbl 1073.74003 · doi:10.1023/B:ELAS.0000005548.36767.e7
[36] Mezić, I., personal communication (2015).
[37] Mancho, A. M.; Wiggins, S.; Curbelo, J.; Mendoza, C., Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18, 3530-3557 (2013) · Zbl 1344.37031 · doi:10.1016/j.cnsns.2013.05.002
[38] Ruiz-Herrera, A., Some examples related to the method of Lagrangian descriptors, Chaos, 25, 063112 (2015) · doi:10.1063/1.4922182
[39] Ruiz-Herrera, A., Performance of Lagrangian descriptors and their variants in incompressible flows, Chaos, 26, 103116 (2016) · Zbl 1378.37058 · doi:10.1063/1.4966176
[40] Rypina, I. I.; Scott, S. E.; Pratt, L. J.; Brown, M. G., Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures, Nonlinear Processes Geophys., 18, 977-987 (2011) · doi:10.5194/npg-18-977-2011
[41] Scott, S. E.; Redd, T. C.; Kuznetsov, L.; Mezić, I.; Jones, C. K., Capturing deviation from ergodicity at different scales, Phys. D (Amsterdam, Neth.), 238, 1668-1679 (2009) · Zbl 1207.37005 · doi:10.1016/j.physd.2009.05.003
[42] Ma, T.; Bollt, E. M., Differential geometry perspective of shape coherence and curvature evolution by finite-time nonhyperbolic splitting, SIAM J. Appl. Dyn. Syst., 13, 1106-1136 (2014) · Zbl 1329.37031 · doi:10.1137/130940633
[43] Dellnitz, M.; Junge, O., On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36, 491-515 (1999) · Zbl 0916.58021 · doi:10.1137/S0036142996313002
[44] Froyland, G., Statistically optimal almost-invariant sets, Phys. D (Amsterdam, Neth.), 200, 205-219 (2005) · Zbl 1062.37103 · doi:10.1016/j.physd.2004.11.008
[45] Froyland, G.; Padberg, K., Almost-invariant sets and invariant manifolds Connecting probabilistic and geometric descriptions of coherent structures in flows, Phys. D (Amsterdam, Neth.), 238, 1507-1523 (2009) · Zbl 1178.37119 · doi:10.1016/j.physd.2009.03.002
[46] Froyland, G.; Lloyd, S.; Santitissadeekorn, N., Coherent sets for nonautonomous dynamical systems, Phys. D (Amsterdam, Neth.), 239, 1527-1541 (2010) · Zbl 1193.37032 · doi:10.1016/j.physd.2010.03.009
[47] Froyland, G.; Santitissadeekorn, N.; Monahan, A., Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos, 20, 043116 (2010) · Zbl 1311.37008 · doi:10.1063/1.3502450
[48] Froyland, G., An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Phys. D (Amsterdam, Neth.), 250, 1-19 (2013) · Zbl 1355.37013 · doi:10.1016/j.physd.2013.01.013
[49] Froyland, G.; Padberg-Gehle, K., Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion, Ergodic Theory, Open Dynamics, and Coherent Structures, 171-216 (2014) · Zbl 1352.37078
[50] Williams, M. O.; Rypina, I. I.; Rowley, C. W., Identifying finite-time coherent sets from limited quantities of Lagrangian data, Chaos, 25, 087408 (2015) · Zbl 1374.37121 · doi:10.1063/1.4927424
[51] Denner, A.; Junge, O.; Matthes, D., Computing coherent sets using the Fokker-Planck equation, Journal of Computational Dynamics, 3, 163-177 (2016) · Zbl 1369.37084 · doi:10.3934/jcd.2016008
[52] Banisch, R.; Koltai, P., Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets, Chaos, 27, 035804 (2017) · Zbl 1387.37011 · doi:10.1063/1.4971788
[53] Froyland, G., Dynamic isoperimetry and the geometry of Lagrangian coherent structures, Nonlinearity, 28, 3587 (2015) · Zbl 1352.37063 · doi:10.1088/0951-7715/28/10/3587
[54] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 1373-1396 (2003) · Zbl 1085.68119 · doi:10.1162/089976603321780317
[55] Froyland, G.; Junge, O., On fast computation of finite-time coherent sets using radial basis functions, Chaos, 25, 087409 (2015) · Zbl 1422.65448 · doi:10.1063/1.4927640
[56] Froyland, G.; Kwok, E., A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds (2016)
[57] Karrasch, D.; Keller, J., A geometric heat-flow theory of Lagrangian coherent structures (2016)
[58] Ma, T.; Bollt, E. M., Relatively coherent sets as a hierarchical partition method, Int. J. Bifurcation Chaos, 23, 1330026 (2013) · Zbl 1275.37007 · doi:10.1142/S0218127413300267
[59] Froyland, G.; Padberg-Gehle, K., A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, 25, 087406 (2015) · Zbl 1374.37114 · doi:10.1063/1.4926372
[60] Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms (1981) · Zbl 0503.68069
[61] Dunn, J. C., A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybern., 3, 32-57 (1973) · Zbl 0291.68033 · doi:10.1080/01969727308546046
[62] Lloyd, S., Least squares quantization in PCM, IEEE Trans. Inf. Theory, 28, 129-137 (2006) · Zbl 0504.94015
[63] Hadjighasem, A.; Karrasch, D.; Teramoto, H.; Haller, G., Spectral-clustering approach to Lagrangian vortex detection, Phys. Rev. E, 93, 063107 (2016) · doi:10.1103/PhysRevE.93.063107
[64] Shi, J. B.; Malik, J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22, 888-905 (2000)
[65] Bhatia, R., Matrix Analysis, 169 (1997)
[66] Yu, S. X.; Shi, J., Multiclass spectral clustering, Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, 313-319 (2003)
[67] Hadjighasem, A.; Haller, G., Level set formulation of two-dimensional Lagrangian vortex detection methods, Chaos, 26, 103102 (2016) · doi:10.1063/1.4964103
[68] Farazmand, M.; Haller, G., Computing Lagrangian coherent structures from their variational theory, Chaos, 22, 013128 (2012) · Zbl 1331.37128 · doi:10.1063/1.3690153
[69] Karrasch, D.; Huhn, F.; Haller, G., Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows, Proc. R. Soc. London A, 471, 20140639 (2014) · Zbl 1371.76044 · doi:10.1098/rspa.2014.0639
[70] Serra, M.; Haller, G., Efficient computation of null geodesics with applications to coherent vortex detection, Proc. R. Soc. London A, 473, 20160807 (2017) · Zbl 1404.37038 · doi:10.1098/rspa.2016.0807
[71] Blazevski, D.; Haller, G., Hyperbolic and elliptic transport barriers in three-dimensional unsteady flows, Phys. D (Amsterdam, Neth.), 273-274, 46-62 (2014) · Zbl 1341.37014 · doi:10.1016/j.physd.2014.01.007
[72] Oettinger, D.; Haller, G., An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows, Chaos, 26, 103111 (2016) · Zbl 1378.37125 · doi:10.1063/1.4965026
[73] Farazmand, M.; Haller, G., Polar rotation angle identifies elliptic islands in unsteady dynamical systems, Phys. D (Amsterdam, Neth.), 315, 1-12 (2016) · Zbl 1364.37171 · doi:10.1016/j.physd.2015.09.007
[74] Haller, G., Dynamic rotation and stretch tensors from a dynamic polar decomposition, J. Mech. Phys. Solids, 86, 70-93 (2016) · Zbl 1473.74003 · doi:10.1016/j.jmps.2015.10.002
[75] Farazmand, M.; Haller, G., Attracting and repelling Lagrangian coherent structures from a single computation, Chaos, 23, 023101 (2013) · Zbl 1331.37108 · doi:10.1063/1.4800210
[76] Hadjighasem, A.; Haller, G., Geodesic transport barriers in Jupiter”s atmosphere: A video-based analysis, SIAM Rev., 58, 69-89 (2016) · Zbl 1353.37179 · doi:10.1137/140983665
[77] del Castillo-Negrete, D.; Morrison, P. J., Chaotic transport by Rossby waves in shear flow, Phys. Fluids A, 5, 948-965 (1993) · Zbl 0781.76017 · doi:10.1063/1.858639
[78] Froyland, G.; Horenkamp, C.; Rossi, V.; Santitissadeekorn, N.; Gupta, A. S., Three-dimensional characterization and tracking of an Agulhas Ring, Ocean Modell., 5253, 69-75 (2012)
[79] Froyland, G.; Horenkamp, C.; Rossi, V.; van Sebille, E., Studying an Agulhas ring”s long-term pathway and decay with finite-time coherent sets, Chaos, 25, 083119 (2015) · Zbl 1374.37031 · doi:10.1063/1.4927830
[80] Froyland, G.; Stuart, R. M.; van Sebille, E., How well-connected is the surface of the global ocean?, Chaos, 24, 033126 (2014) · Zbl 1374.86009 · doi:10.1063/1.4892530
[81] Asay-Davis, X. S.; Marcus, P. S.; Wong, M. H.; de Pater, I., Jupiter”s shrinking great red spot and steady oval BA: Velocity measurements with the advection corrected correlation image velocimetry automated cloud-tracking method, Icarus, 203, 164-188 (2009) · doi:10.1016/j.icarus.2009.05.001
[82] Haller, G., A variational theory of hyperbolic Lagrangian coherent structures, Phys. D (Amsterdam, Neth.), 240, 574-598 (2011) · Zbl 1214.37056 · doi:10.1016/j.physd.2010.11.010
[83] Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Koçak, H., Tracing the early development of harmful algal blooms on the West Florida Shelf with the aid of Lagrangian coherent structures, J. Geophys. Res.: Oceans, 113, C12014 (2008) · doi:10.1029/2007JC004533
[84] Beal, L. M.; De Ruijter, W. P. M.; Biastoch, A.; Zahn, R., On the role of the Agulhas system in ocean circulation and climate, Nature, 472, 429-436 (2011) · doi:10.1038/nature09983
[85] Beron-Vera, F. J., Flow coherence: Distinguishing cause from effect, Selected Topics of Computational and Experimental Fluid Mechanics, 81-89 (2015)
[86] Deville, M.; Gatski, T., Mathematical Modeling for Complex Fluids and Flows (2012) · Zbl 1243.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.