×

Kähler metrics with constant weighted scalar curvature and weighted K-stability. (English) Zbl 1430.53075

Author’s abstract: We introduce a notion of a Kähler metric with constant weighted scalar curvature on a compact Kähler manifold \(X\), depending on a fixed real torus \(\mathbb{T}\) in the reduced group of automorphisms of \(X\), and two smooth (weight) functions \(v>0\) and \(w\), defined on the momentum image (with respect to a given Kähler class \(\alpha\) on \(X\)) of \(X\) in the dual Lie algebra of \(\mathbb{T}\). We show that a number of known results obstructing the existence of constant scalar curvature Kähler (cscK) metrics can be extended to the weighted setting. In particular, we introduce a functional \(\mathcal{M}_{v,w}\) on the space of \(\mathbb{T}\)-invariant Kähler metrics in \(\alpha\), extending the Mabuchi energy in the cscK case, and show that if \(\alpha\) is Hodge, then constant weighted scalar curvature metrics in \(\alpha\) are minima of \(\mathcal{M}_{v,w}\). We define a \((v,w)\)-weighted Futaki invariant of a \(\mathbb{T}\)-compatible smooth Kähler test configuration associated to \((X,\alpha,\mathbb{T})\), and show that the boundedness from below of the \((v,w)\)-weighted Mabuchi functional \(\mathcal{M}_{v,w}\) implies a suitable notion of a \((v,w)\)-weighted K-semistability.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q15 Kähler manifolds
58D17 Manifolds of metrics (especially Riemannian)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] M.Abreu, ‘Kähler geometry of toric varieties and extremal metrics’, Internat. J. Math.9 (1998) 641-651. · Zbl 0932.53043
[2] M.Abreu, ‘Kähler metrics on toric orbifolds’, J. Differential Geom.58 (2001) 151-187. · Zbl 1035.53055
[3] V.Apostolov and D. M. J.Calderbank, ‘The CR geometry of weighted extremal Kähler and Sasaki metrics’, Preprint, 2018, arXiv:1810.10618. · Zbl 1467.53071
[4] V.Apostolov, D. M. J.Calderbank, P.Gauduchon and C.Tønnesen‐Friedman, ‘Hamiltonian 2‐forms in Kähler geometry, III extremal metrics and stability’, Invent. Math.173 (2008) 547-601. · Zbl 1145.53055
[5] V.Apostolov, D. M. J.Calderbank, P.Gauduchon and C.Tønnesen‐Friedman, ‘Extremal Kähler metrics on projective bundles over a curve’, Adv. Math.227 (2011) 2385-2424. · Zbl 1232.32011
[6] V.Apostolov and G.Maschler, ‘Conformally Kähler, Einstein‐Maxwell geometry’, Preprint, 2015, arXiv:1512.06391v1. · Zbl 1477.53077
[7] V.Apostolov, G.Maschler and C.Tønnesen‐Friedman, ‘Weighted extremal Kähler metrics and the Einstein-Maxwell geometry of projective bundles’, Preprint, 2018, arXiv:1808.02813.
[8] C.Arezzo, F.Pacard and M.Singer, ‘Extremal metrics on blowups’, Duke Math. J.157 (2011) 1-51. · Zbl 1221.32008
[9] M. F.Atiyah, ‘Convexity and commuting Hamiltonians’, Bull. Lond. Math. Soc.14 (1982) 1-15. · Zbl 0482.58013
[10] D.Barlet, ‘How to use the cycle space in complex geometry’, Several complex variables, Mathematical Science and Research Institute Publications 37 (eds M.Schneider (ed.) and Y. T.Siu (ed.); Cambridge University Press, Cambridge, 1999) 25-42. · Zbl 0962.32016
[11] R. J.Berman and B.Berndtsson, ‘Convexity of the K‐energy on the space of Kähler metrics and uniqueness of extremal metrics’, J. Amer. Math. Soc.30 (2017) 1165-1196. · Zbl 1376.32028
[12] R. J.Berman and D.Witt‐Nyström, ‘Complex optimal transport and the pluripotential theory of Kähler‐Ricci solitons’, Preprint, 2014, arXiv:1401.8264.
[13] B.Berndtsson, ‘A Brunn‐Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry’, Invent. Math.200 (2015) 149-200. · Zbl 1318.53077
[14] S.Boucksom, T.Hisamoto and M.Jonsson, ‘Uniform K‐stability, Duistermaat‐Heckman measures and singularities of pairs’, Ann. Inst. Fourier (Grenoble)67 (2017) 743-841. · Zbl 1391.14090
[15] C. P.Boyer and K.Galicki, Sasakian geometry, Oxford Mathematical Monographs (Oxford University Press, Oxford, 2008). · Zbl 1155.53002
[16] E.Calabi, ‘Extremal Kähler metrics’, Differential geometry, vol. 102, Annals of Mathematics Studies 279 (ed. S.Yau (ed.); Princeton University Press, Princeton, NJ, 1982) 259-290. · Zbl 0487.53057
[17] H.Cao, G.Tian and X.Zhu, ‘Kähler‐Ricci solitons on compact complex manifolds with \(c_1 ( M ) > 0\)’, Geom. Funct. Anal.15 (2005) 697-719. · Zbl 1084.53035
[18] D.Catlin, ‘The Bergman kernel and a theorem of Tian’, Analysis and geometry in several complex variables, Trends in Mathematics (eds G.Komatsu (ed.) and M.Kuranishi (ed.); Birkhäuser Boston, Boston, MA, 1999) 1-23. · Zbl 0941.32002
[19] L.Charles, ‘Berezin‐Toeplitz operators, a semi‐classical approach’, Comm. Math. Phys.239 (2003) 1-28. · Zbl 1059.47030
[20] X.Chen, ‘The space of Kähler metrics’, J. Differential Geom.56 (2000) 189-234. · Zbl 1041.58003
[21] X.Chen, ‘On the lower bound of the Mabuchi energy and its application’, Int. Math. Res. Not.2000 (2000) 607-623. · Zbl 0980.58007
[22] X. X.Chen, C.LeBrun and B.Weber, ‘On Conformally Kähler, Einstein manifolds’, J. Amer. Math. Soc.21 (2008) 1137-1168. · Zbl 1208.53072
[23] X. X.Chen and G.Tian, ‘Geometry of Kähler metrics and foliations by holomorphic discs’, Publ. Math. Inst. Hautes Études Sci.107 (2008) 1-107. · Zbl 1182.32009
[24] T.Darvas, ‘Morse theory and geodesics in the space of Kähler metrics’, Proc. Amer. Math. Soc.142 (2014) 2775-2782. · Zbl 1302.32022
[25] T.Delzant, ‘Hamiltoniens peŕiodiques et image convexe de l’application moment’, Bull. Soc. Math. France116 (1988) 315-339. · Zbl 0676.58029
[26] A.Derdzinski and G.Maschler, ‘A moduli curve for compact conformally‐Einstein Kähler manifolds’, Compos. Math.141 (2005) 1029-1080. · Zbl 1087.53066
[27] R.Dervan, ‘Relative K‐stability for Kähler manifolds’, Math. Ann.372 (2018) 859-889. · Zbl 1407.53079
[28] R.Dervan and J.Ross, ‘K‐stability for Kähler Manifolds’, Math. Res. Lett.24 (2017) 689-739. · Zbl 1390.32021
[29] M.Dimassi and J.Sjostrand, Spectral asymptotics in the semi‐classical limit, London Mathematical Society Lecture Note Series 268 (Cambridge University Press, Cambridge, 1999). · Zbl 0926.35002
[30] W.Ding and G.Tian, ‘Kähler-Einstein metrics and the generalized Futaki invariant’, Invent. Math.110 (1992) 315-336. · Zbl 0779.53044
[31] S. K.Donaldson, ‘Remarks on gauge theory, complex geometry and 4‐manifold topology’, Fields medallists lectures, World Scientific Series in 20th Century Mathematics 5 (eds M.Atiyah (ed.) and D.Lagolnitzer (ed.); World Scientific Publishing, River Edge, NJ, 1997) 384-403.
[32] S. K.Donaldson, ‘Symmetric spaces, Kähler geometry and Hamiltonian dynamics’, Northern California symplectic geometry seminar, vol. 196, American Mathematical Society Translation Series 2 (eds Ya.Eliashberg (ed.), D.Fuchs (ed.), T.Ratiu (ed.) and A.Weinstein (ed.); American Mathematical Society, Providence, RI, 1999) 13-33. · Zbl 0972.53025
[33] S. K.Donaldson, ‘Scalar curvature and projective embeddings I’, J. Differential Geom.59 (2001) 479-522. · Zbl 1052.32017
[34] S. K.Donaldson, ‘Scalar curvature and stability of toric varieties’, J. Differential Geom.62 (2002) 289-349. · Zbl 1074.53059
[35] S. K.Donaldson, ‘Scalar curvature and projective embeddings II’, Q. J. Math.56 (2005) 345-356. · Zbl 1159.32012
[36] S. K.Donaldson, ‘Lower bounds of the Calabi functional’, J. Differential Geom.70 (2006) 453-472. · Zbl 1149.53042
[37] S. K.Donaldson, ‘Kähler geometry on toric manifolds, and some other manifolds with large symmetry’, Handbook of geometric analysis, No. 1, Advanced Lectures in Mathematics (ALM) 7 (eds L.Ji (ed.), P.Li (ed.), R.Schoen (ed.) and L.Simon (ed.); International Press, Somerville, MA, 2008) 29-75. · Zbl 1161.53066
[38] Z. S.Dyrefelt, ‘On K‐polystability of cscK manifolds with transcendental cohomology class’, Int. Math. Res. Not. (2018) 1-49.
[39] Z. S.Dyrefelt, ‘K‐semistability of cscK manifolds with transcendental cohomology class’, J. Geom. Anal.28 (2018) 2927-2960. · Zbl 1409.32017
[40] A.Fujiki, ‘Moduli space of polarized algebraic manifolds and Kähler metrics’, Sugaku Expositions5 (1992) 173-191. (translation of Sugaku 42 (1990) 231-243.) · Zbl 0796.32009
[41] A.Fujiki and G.Schumacher, ‘The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics’, Publ. Res. Inst. Math. Sci.26 (1990) 101-183. · Zbl 0714.32007
[42] A.Futaki and T.Mabuchi, ‘Bilinear forms and extremal Kähler vector fields associated with Kähler classes’, Math. Ann.301 (1995) 199-210. · Zbl 0831.53042
[43] A.Futaki and H.Ono, ‘Volume minimization and Conformally Kähler Einstein-Maxwell Geometry’, J. Math. Soc. Japan70 (2017) 1493-1521. · Zbl 1410.53071
[44] A.Futaki and H.Ono, ‘Conformally Einstein-Maxwell Kähler metrics and structure of the automorphism group’, Math. Z. (2017) 1-19.
[45] P.Gauduchon, Calabi’s extremal metrics: an elementary introduction, Lecture Notes.
[46] D.Guan, ‘On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles’, Math. Res. Lett.6 (1999) 547-535. · Zbl 0968.53050
[47] V.Guillemin, ‘Kähler structures on toric varieties’, J. Differential Geom.40 (1994) 285-309. · Zbl 0813.53042
[48] V.Guillemin and S.Sternberg, ‘Convexity properties of the moment mapping’, Invent. Math.67 (1982) 491-513. · Zbl 0503.58017
[49] V.Guillemin and S.Sternberg, ‘Riemann sums over polytopes’, Ann. Inst. Fourier (Grenoble)57 (2007) 2183-2195. · Zbl 1143.52011
[50] A. D.Hwang and M. A.Singer, ‘A momentum construction for circle‐invariant Kahler metrics’, Trans. Amer. Math. Soc.354 (2002) 2285-2325. · Zbl 0987.53032
[51] E.Inoue, ‘The moduli space of Fano manifolds with Kähler‐Ricci solitons’, Preprint, 2018, arXiv:1802.08128.
[52] E.Inoue, ‘Constant \(\mu \)‐scalar curvature Kähler metric ‐ formulation and foundational results’, Preprint, 2019, arXiv:1902.00664.
[53] C.Koca and C.Tønnesen‐Friedman, ‘Strongly Hermitian Einstein-Maxwell solutions on ruled surfaces’, Ann. Global Anal. Geom.50 (2016) 29-46. · Zbl 1347.53057
[54] A.Lahdili, ‘Automorphisms and deformations of conformally Kähler, Einstein-Maxwell metrics’, J. Geom. Anal.29 (2017) 542-568. · Zbl 1408.53096
[55] A.Lahdili, ‘Conformally Kähler, Einstein-Maxwell metrics and boundedness of the modified Mabuchi functional’, Int. Math. Res. Not., to appear. · Zbl 1461.53053
[56] C.LeBrun, ‘The Einstein-Maxwell equations, extremal Kähler metrics, and Seiberg-Witten theory’, The many facets of geometry (eds N. J.Hitchin (ed.), O.Garcia‐Prada (ed.), J. P.Bourguignon (ed.) and S.Salamon (ed.); Oxford University Press, Oxford, 2010) 17-33. · Zbl 1229.53073
[57] C.LeBrun, ‘The Einstein-Maxwell equations, Kähler metrics, and Hermitian geometry’, J. Geom. Phys.91 (2015) 163-171. · Zbl 1318.53033
[58] C.LeBrun, ‘The Einstein-Maxwell equations and conformally Kähler geometry’, Comm. Math. Phys.344 (2016) 621-653. · Zbl 1343.53074
[59] C. R.LeBrun and S.Simanca, ‘On the Kähler classes of extremal metrics’, Geometry and global analysis (Tohoku University, Sendai, 1993) 255-271. · Zbl 0921.53032
[60] E.Lerman and S.Tolman, ‘Hamiltonian torus actions on symplectic orbifolds and toric varieties’, Trans. Amer. Math. Soc.349 (1997) 4201-4230. · Zbl 0897.58016
[61] C.Li, ‘Constant scalar curvature Kähler metrics obtains minimum of K‐energy’, Int. Math. Res. Not.2011 (2011) 2161-2175. · Zbl 1236.32017
[62] A.‐M.Li, Z.Lian and L.Sheng, ‘Some estimates for a generalized Abreu’s equation’, Differential Geom. Appl.48 (2016) 87-103. · Zbl 1346.53064
[63] A.‐M.Li, Z.Lian and L.Sheng, ‘Interior regularity for a generalized Abreu equation’, J. Geom.108 (2017) 775-790. · Zbl 1377.53093
[64] A.‐M.Li, L.Sheng and G.Zhao, ‘Differential inequalities on homogeneous toric bundles’, J. Geom.108 (2017) 775-790. · Zbl 1377.53093
[65] X.Ma and G.Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in Mathematics 254 (Birkhäuser, Basel, 2007). · Zbl 1135.32001
[66] X.Ma and G.Marinescu, ‘Berezin‐Toeplitz quantization on Kähler manifolds’, J. reine angew. Math.662 (2012) 1-56. · Zbl 1251.47030
[67] T.Mabuchi, ‘K‐energy maps integrating Futaki invariants’, Tohoku Math. J. (2)38 (1986) 575-593. · Zbl 0619.53040
[68] T.Mabuchi, ‘Some symplectic geometry on compact Kähler manifolds. I’, Osaka J. Math. (2)24 (1987) 227-252. · Zbl 0645.53038
[69] D.McDuff and S.Tolman, ‘Topological properties of Hamiltonian circle actions’, Int. Math. Res. Pap.72826 (2006) 1-77. · Zbl 1115.53062
[70] Y.Odaka, ‘The GIT stability of polarized varieties via discrepancy’, Ann. of Math. (2)177 (2013) 645-661. · Zbl 1271.14067
[71] Y.Odaka, ‘A generalization of the Ross-Thomas slope theory’, Osaka J. Math.50 (2013) 171-185. · Zbl 1328.14073
[72] A.Raza, ‘Scalar curvature and multiplicity‐free actions’, PhD Thesis, Imperial College, London, 2005.
[73] J.Ross and R.Thomas, ‘An obstruction to the existence of constant scalar curvature Kähler metrics’, J. Differential Geom.72 (2006) 429-466. · Zbl 1125.53057
[74] W.‐D.Ruan, ‘Canonical coordinates and Bergman metrics’, Comm. Anal. Geom.6 (1998) 589-631. · Zbl 0917.53026
[75] Y.Sano and C.Tipler, ‘Extremal Kähler metrics and lower bound of the modified K‐energy’, J. Eur. Math. Soc.17 (2015) 2289-2310. · Zbl 1343.53075
[76] J.Stoppa, ‘K‐stability of constant scalar curvature Kähler manifolds’, Adv. Math.221 (2009) 1397-1408. · Zbl 1181.53060
[77] G.Székelyhidi, ‘Extremal metrics and K‐stability’, Bull. Lond. Math. Soc.39 (2007) 76-84. · Zbl 1111.53057
[78] G.Székelyhidi, ‘On blowing up extremal Kähler manifolds’, Duke Math. J.161 (2012) 1411-1453. · Zbl 1259.58002
[79] G.Székelyhidi, Introduction to extremal Kähler metrics, Graduate Studies in Mathematics 152 (American Mathematical Society, Providence, RI, 2014). · Zbl 1298.53002
[80] G.Székelyhidi and J.Stoppa, ‘Relative \(K\)‐stability of extremal metrics’, J. Eur. Math. Soc.13 (2011) 899-909. · Zbl 1230.53069
[81] G.Tian, ‘On Calabi’s conjecture for complex surfaces with positive first Chern class’, Invent. Math.101 (1990) 101-172. · Zbl 0716.32019
[82] G.Tian, ‘On a set of polarized Kähler metrics on algebraic manifolds’, J. Differential Geom.32 (1990) 99-130. · Zbl 0706.53036
[83] G.Tian, ‘Kähler-Einstein metrics with positive scalar curvature’, Invent. Math.137 (1997) 1-37. · Zbl 0892.53027
[84] G.Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich (Birkhuser, Basel, 2000). · Zbl 0978.53002
[85] G.Tian, ‘Bott‐Chern forms and geometric stability’, Discrete Contin. Dyn. Syst.6 (2000) 211-220. · Zbl 1022.32009
[86] G.Tian and X.Zhu, ‘Uniqueness of Kähler‐Ricci solitons’, Acta Math.184 (2000) 271-305. · Zbl 1036.53052
[87] G.Tian and X.Zhu, ‘A new holomorphic invariant and uniqueness of Kähler‐Ricci solitons’, Comment. Math. Helv.77 (2002) 297-325. · Zbl 1036.53053
[88] X.Wang, ‘Height and GIT weight’, Math. Res. Lett.19 (2012) 909-926. · Zbl 1408.14147
[89] S.Zelditch, ‘Szego kernels and a theorem of Tian’, Int. Math. Res. Not.1998 (1998) 317-331. · Zbl 0922.58082
[90] S.Zelditch, ‘Bernstein polynomials, Bergman kernels and toric Kähler varieties’, J. Symplectic Geom.104 (2009) 51-76. · Zbl 1178.32019
[91] S.Zelditch and P.Zhou, ‘Central limit theorem for spectral partial Bergman kernels’, Preprint, 2017, arXiv:1708.09267.
[92] S.Zhang, ‘Heights and reductions of semi‐stable varieties’, Compos. Math.104 (1996) 77-105. · Zbl 0924.11055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.